Could you share some savefiles? Or a bitt different, could you share some examples of use of your UF colour algorithm?
Certainly.
I'll throw together a UF parameter that will work with the ucl posted here:
http://www.fractalforums.com/ultrafractal/multiwave-coloring-for-mandelbrot/(use the original, not the beta that's posted later in the thread)
The following ought to work to recreate the first image in this thread. The center coords are exact so typing in new magnifications will zoom within this sequence.
I should warn you that to get close to the quality results I've posted you'd need to use 3x3 AA, depth 2, nonadaptive AA because depth 1 isn't enough oversampling and UF's adaptive AA seems not to work as well as mine. The deeper images would thus need some
very beefy hardware to render in anywhere
near a reasonable time; or even a cluster rendering different tiles of the image per machine.
evdz1_001 {
fractal:
title="evdz1_001" width=640 height=480 layers=1
credits="Paul Derbyshire;5/2/2012"
layer:
caption="Background" opacity=100 transparent=yes
mapping:
center=0.27533764774673799358866712482462788156671406989542628591627\
43630674375101302303013096719753566536398605828842046373538499736266\
35844461696577733396177173659502869597622654858047830473369233652610\
60963100721927003791989610861331863571141065592841226995797739723012\
37429858982392118169313982419037974591024387294087020052711459666165\
4505/0.0067596494053278506701817004561949295021897502346143048463572\
69137106731032582471677573582008294494705826194131450773107049670717\
14678595763311924422571027117886784050420240236249129631789483532106\
49715186737756302527451352947002166738157907333431349841201085240017\
99351076577642283751627469315124883962453013093853471898311683555782\
404 magn=8e2
formula:
maxiter=10000000 filename="Standard.ufm" entry="Mandelbrot"
p_start=0/0 p_power=2/0 p_bailout=100000.0
inside:
transfer=none
outside:
transfer=linear filename="mandelmultiwave.ucl" entry="MandelMultiwave"
p_power=2/0 p_c1a=4284232974 p_c2a=4293965112 p_c3a=4290416458
p_c4a=4293074205 p_hfreq1=940.0 p_c1b=4286659412 p_c2b=4291270285
p_c3b=4284219392 p_c4b=4292944383 p_c1c=4282852703 p_c2c=4287529106
p_c3c=4291003114 p_c4c=4278804457 p_c1d=4281150773 p_c2d=4283848294
p_c3d=4288124349 p_c4d=4291037271 p_c1e=4283514173 p_c2e=4289431433
p_c3e=4291276723 p_c4e=4286321684 p_hfreq2=25000.0 p_cx=4290789440
p_cy=4290789440 p_cz=4283516743 p_sfreq=5000.0 p_smode="hsl bias"
p_spow=2.0 p_lfreq=9.0 p_lmag=0.15 p_lfreq2=10.0 p_lmag2=0.15
p_lfreq3=2544.0 p_lmag3=0.8 p_lfreq4=235.0 p_lmag4=0.6
p_mmode="hsl bias" p_fit=yes p_fittimes=1.0 p_fitminit=25000
p_fitmaxit=10000000 p_transfer=Log p_transpower=3.0
p_bailout=100000.0 p_displacement=0 p_rescale=1.0
gradient:
smooth=yes index=0 color=4210880 index=94 color=16255112 index=110
color=12547413 index=138 color=6071460 index=165 color=197629
index=185 color=9335424 index=399 color=16777215
opacity:
smooth=no index=0 opacity=255
}
Oh, and:
