Hello,

Here are some renderings of a class of fractals which I call "Kaleidoscopic IFS". There is a big variations of shapes one can get with this method.

I began with this algorithm to get DE for symmetric Sierpinski tetrahedron:

//scale=2

//bailout=1000

sierpinski3(x,y,z){

r=x*x+y*y+z*z;

for(i=0;i<10 && r<bailout;i++){

//Folding... These are some of the symmetry planes of the tetrahedron

if(x+y<0){x1=-y;y=-x;x=x1;}

if(x+z<0){x1=-z;z=-x;x=x1;}

if(y+z<0){y1=-z;z=-y;y=y1;}

//Stretche about the point [1,1,1]*(scale-1)/scale; The "(scale-1)/scale" is here in order to keep the size of the fractal constant wrt scale

x=scale*x-(scale-1);//equivalent to: x=scale*(x-cx); where cx=(scale-1)/scale;

y=scale*y-(scale-1);

z=scale*z-(scale-1);

r=x*x+y*y+z*z;

}

return (sqrt(r)-2)*scale^(-i);//the estimated distance

}

Then I added a rotation before the fold or before the stretch or both.

//scale=2

//bailout=1000

sierpinski3(x,y,z){

r=x*x+y*y+z*z;

for(i=0;i<10 && r<bailout;i++){

rotate1(x,y,z);

if(x+y<0){x1=-y;y=-x;x=x1;}

if(x+z<0){x1=-z;z=-x;x=x1;}

if(y+z<0){y1=-z;z=-y;y=y1;}

rotate2(x,y,z);

x=scale*x-(scale-1);

y=scale*y-(scale-1);

z=scale*z-(scale-1);

r=x*x+y*y+z*z;

}

return (sqrt(r)-2)*scale^(-i);//the estimated distance

}

Then I allowed the center of stretching to be modified.

//scale=2

//bailout=1000

sierpinski3(x,y,z){

r=x*x+y*y+z*z;

for(i=0;i<10 && r<bailout;i++){

rotate1(x,y,z);

if(x+y<0){x1=-y;y=-x;x=x1;}

if(x+z<0){x1=-z;z=-x;x=x1;}

if(y+z<0){y1=-z;z=-y;y=y1;}

rotate2(x,y,z);

x=scale*x-CX*(scale-1);

y=scale*y-CY*(scale-1);

z=scale*z-CZ*(scale-1);

r=x*x+y*y+z*z;

}

return (sqrt(r)-2)*scale^(-i);//the estimated distance

}

(In my implementation [CX,CY,CZ] is constrained to be on the unit sphere)

This gives 1+3+3+2=9 parameters in total (scale->1,rotation1->3,rotation2->3,center of stretch->2).

The set of folding operation may be different. Here are those that I've tried:

- half tetrahedral symmetry planes: the same than above.

if(x+y<0){x1=-y;y=-x;x=x1;}

if(x+z<0){x1=-z;z=-x;x=x1;}

if(y+z<0){y1=-z;z=-y;y=y1;}

- 2nd half tetrahedral symmetry planes:

if(x-y<0){x1=y;y=x;x=x1;}

if(x-z<0){x1=z;z=x;x=x1;}

if(y-z<0){y1=z;z=y;y=y1;}

- full tetrahedral symmetry planes:

if(x-y<0){x1=y;y=x;x=x1;}

if(x-z<0){x1=z;z=x;x=x1;}

if(y-z<0){y1=z;z=y;y=y1;}

if(x+y<0){x1=-y;y=-x;x=x1;}

if(x+z<0){x1=-z;z=-x;x=x1;}

if(y+z<0){y1=-z;z=-y;y=y1;}

- cubic symmetry planes:

x=abs(x);y=abs(y);z=abs(z);

- half octahedral symmetry planes:

if(x-y<0){x1=y;y=x;x=x1;}

if(x+y<0){x1=-y;y=-x;x=x1;}

if(x-z<0){x1=z;z=x;x=x1;}

if(x+z<0){x1=-z;z=-x;x=x1;}

- full octahedral symmetry planes:

x=abs(x);y=abs(y);z=abs(z);

if(x-y<0){x1=y;y=x;x=x1;}

if(x-z<0){x1=z;z=x;x=x1;}

if(y-z<0){y1=z;z=y;y=y1;}

Ah! I forgot the pictures

:

se also:

http://www.fractalforums.com/index.php?action=gallery;su=user;cat=164;u=932The last picture is done with this algorithm:

Menger3(x,y,z){

r=x*x+y*y+z*z;

for(i=0;i<MI && r<bailout;i++){

rotate1(x,y,z);

x=abs(x);y=abs(y);z=abs(z);

if(x-y<0){x1=y;y=x;x=x1;}

if(x-z<0){x1=z;z=x;x=x1;}

if(y-z<0){y1=z;z=y;y=y1;}

rotate2(x,y,z);

x=scale*x-CX*(scale-1);

y=scale*y-CY*(scale-1);

z=scale*z;

if(z>0.5*CZ*(scale-1)) z-=CZ*(scale-1);

r=x*x+y*y+z*z;

}

return (sqrt(x*x+y*y+z*z)-2)*scale^(-i);

}

Which gives the menger sponge when used with CX=CY=CZ=1, scale=3 and no rotation.