Logo by Pauldelbrot - Contribute your own Logo!

END OF AN ERA, FRACTALFORUMS.COM IS CONTINUED ON FRACTALFORUMS.ORG

it was a great time but no longer maintainable by c.Kleinhuis contact him for any data retrieval,
thanks and see you perhaps in 10 years again

this forum will stay online for reference
News: Support us via Flattr FLATTR Link
 
*
Welcome, Guest. Please login or register. September 21, 2021, 10:42:37 PM


Login with username, password and session length


The All New FractalForums is now in Public Beta Testing! Visit FractalForums.org and check it out!


Pages: [1]   Go Down
  Print  
Share this topic on DiggShare this topic on FacebookShare this topic on GoogleShare this topic on RedditShare this topic on StumbleUponShare this topic on Twitter
Author Topic: Elephant spiral tiling with central transformation  (Read 803 times)
0 Members and 1 Guest are viewing this topic.
Dinkydau
Fractal Senior
******
Posts: 1616



WWW
« on: May 26, 2017, 06:57:11 PM »



Mandel Machine, Mandelbrot set

The whole thing is a tiling. In my previous tiling image "Triangle tiling with layered julia morphing" I attempted to make the best suitable julia morphing to be inside a tiling. An important aspect was that it had to connect to the tiling in a visually understandable way. In this image, however, I transformed the tiling itself. I'm using the word transformation for something I would usually call a julia morphing because what I've been morphing here looks more like a tiling than your typical julia set.

The result is something that kinda looks like a cross. Originally I wanted to make a tree-shape. It's something that I have wanted to do for quite a while but there are some obstructions:
1. Transforming a tiling shrinks it by a factor 2 with each transformation. For it to be screen-filling, the initial steps to build the tiling need to be done twice as many times, doubling the required depth. Reaching the desired result of a transformation already requires 1.5 extra depth normally, so each transformation requires 3 times the depth in the tiling situation. That is a very significant difference that gets bigger and bigger as the number of transformations increases. Depth is a problem because it's harder to reach and render at much greater depths.
2. The size of the tiles becomes too small to see them properly after too many transformations.
3. Currently my best idea to do it is this: I know how to make a tree out of a julia set, so I need to make a julia set out of the tiling first. It needs to have enough details to be able to build a tree out of it, requiring equally as many morphings as the number of times new branches split off the center of the tree. It means the number of transformations to build the tree is double that, effectively increasing the depth by a factor of 3^2 = 9 (!!) for each extra increase in number of arms. You can imagine how much larger 9^n is than 1.5^n (n being the number of transformations), as would be the normal depth increase when making a tree. Without any improvements to this, the idea is impractical.

I've said something about making a julia set out of a tiling. The way I was going to accomplish that is by doubling the center of the tiling, the doubling the morphing, doubling that etc. which results in something that, for my intentions, is similar enough to a peanut julia set. It just doesn't have (infinite) self-similarity. What you see here is an early phase of that idea, doubled for 4-fold rotational symmetry.

Magnification:
2^9870
1.4657408896420228648538645519085e+2971

Coordinates:
Code:
Re = -1.7498439088634276800460948042342922498295334226571513188740914298952160154495160835921441755475654893999982369876215851617592098468229564680702922351168965760097475776102438594727651509787077718910539436125381937707617605884622639199601316173201755267877495940801859921008741036365835317535325754579310659698172718927559068739259993943489903422220415937003111035235632482550767932444453657416776260831329826364139257446420512980873151922763831367430838804091679690611736967486334921632295099429770359931163075192348893492407688808513153245277731668770979345334874317532468385607661936063534917048525309601960566949936316979336866617749321597297823714013372646899964899346285783803172833516418670799966711933325159465508213919277200803000055872852120819029687577982703573729797193182111971306136776267365805118136976570306298588531306446692744199554252596954263700577089578723507789675760521447513869517740980613852561229822340340821960377577072823654587832275540464160845654172941864633386678150003773464150372439849205478866686753163400567627899379488621753733939322237710510489899894319695620114081220960799108362857739101378201141015236614994736212399978478462228663563168926677891397591332060282422583766336444493991592761516899516720428428445030542837098451502818031894096231891126049834098808975971389759975985150362816201102121018083628059439863570774916034325209057641891673750907649855902580808823385917908184577563638857597924200360805831466148522376361731640904864693988420015313810216766041336750368569166250692222461154246966278977859304313592575028322631156576324942021305183391989500220481100230016404570236474879345415061504192883601549161673363117250118782954658561767077600417297183475910010828666415715253229639189256362950223239974866161213210866713886300308480188590857334497621417446574144421055762236175453201119570339202660482102753858422401131043468838188246221038734014328251300488439192100059396153720293433575490048680511435309255321529303432822265191296671629725830605376213014511810829167186060245587406244714168349595569030001662916290777088899112276716205440876804982372349280290334339551559023028248022816778418359021526473978858832783517847281048800951679546036790338353953143256548965295380780837896255691843446714391071948040002697770654394052015260255393376175280788923261119479110963358582732044643161872472885492978505953850286721671320296384955791562868032502403710449580790524128525636701394699880064688726954218490244554281678600023139268604824255407806421895967872781732308596780588474743680047670637781940624315346439381802681954581244045582241975959875957962316604643837152815035116622127450845860253963974889814159946447197039023379170539609194628016770286801768992266381824648034095425613913539495478717100958571514945248496902412048555941047782774510767649781516106282821761253790079756292170876360361748187034655726742995944555407678379822885287868173604717194566230010229214603428202446987503287921106362107355612486404563715497
Im = 0.0000000159959473146319642717540099365976948500705065715209798252640461993465538628308271291417567856676375259782625663886020914208896933202641339653886737470769520025797007857355688277340916809887701394149355736780982888336303707426011948432980348233270700327920071207166294721964801722915416135341446136599969054710440421562301919810640516949611055655445374278378523875044932672841451066063600543720534132018364998118432787011667094357767592746119445662386613217689596616495795570879453511631475015465202878892577516514921740593502750764153271780790082960896474165423118429738903206147242877552749256873871105093358252352732331060728483105073241167843748437518392524351874358787417493003841145166331703983481875389753117117932032962953506584753054080076767788009823281476265482712320371045802342552403470963012571639687849320512232492175287872997902858556379366234132626695909943079162218988205311016002657446116689747111210533111481206942309139308952184605691152141960826333395982721345476132751975971022146535204595433352512002578302892490105214373912229371581958063660115836891169373147116580207143925553002261364624545240328038200540148829737033585513962225949452826609947213453364282239248466862885661935973676913754680865468875965089162465135074498164822314446163324863073935405497487064708583916816516533975726680127663202426511499033222075508877083212530649296209358665321153111812420249785544611998025674846336691047595198408371194264939589594429132157351553726174718486809904515040993978014361545147263981626591617347758542367019696332480685643916496305189291127422116306514284473360959979610585543698541400957830806278941724934040493095816324802704019794878310546321765246167763900378695196267121408050678909760576027231496049406396550408670379362262182178544798472264457901620793091459280836757386717166694446359647130402178640031711905205225841807086759410586590898742578188102841587698798631546687215830493331902873137159054492715093065045167280084467604666680883585150536344069812477725101393596817253505556349472358259816524030849996642801406956427167170327092676365024688733492601876964692824759894626974050081365969753000708139172781769560750226186916342763822262989132793630073189830957326040774791732039169455213647452293020342005664871046362252739644996046672804407485968984950340837280695544530862471085846992558012998912101664588802674745392701373309979629845938837179272067628387974487488874154567647656115499120884893301050640923839135312465224721530140263802091571317219010359968405330584283214583937484038726235020015489667750541678639777104491176726074347886713693804393387049866338689190684271772913934340107566951726283444179319632633810736907114231121232694263979534185977644430817648323272004289857100248104618629806930539306672302326896495469553220010205700230257475740272421099410035434715924022827075312970916872859580939642662854699129713633533001625605559242928706357843554207880763875716758293274507690637883513572704426297634947130620506
« Last Edit: May 26, 2017, 07:03:42 PM by Dinkydau » Logged

schwungsau
Forums Newbie
*
Posts: 7



HeriRaab
WWW
« Reply #1 on: June 04, 2017, 04:20:27 AM »

nice one !
Logged
Chillheimer
Global Moderator
Fractal Schemer
******
Posts: 972


Just another fractal being floating by..


chilli.chillheimer chillheimer
WWW
« Reply #2 on: June 04, 2017, 09:38:10 AM »

Wow!
Logged

--- Fractals - add some Chaos to your life and put the world in order. ---
Spain2points
Navigator
*****
Posts: 75


WWW
« Reply #3 on: June 04, 2017, 02:04:00 PM »

cool
Logged
Dinkydau
Fractal Senior
******
Posts: 1616



WWW
« Reply #4 on: June 05, 2017, 05:26:02 PM »

Thank you
Logged

quaz0r
Fractal Molossus
**
Posts: 652



« Reply #5 on: June 05, 2017, 08:21:42 PM »

very cool!   cheesy
Logged
Svarvsven
Forums Freshman
**
Posts: 19

Mandelbrot mostly


« Reply #6 on: June 06, 2017, 11:24:12 AM »

The whole thing is a tiling.

The end result looks really, really good, but what does the original location look like (Mandelbrot or Julia)?
Logged
Dinkydau
Fractal Senior
******
Posts: 1616



WWW
« Reply #7 on: June 06, 2017, 12:50:14 PM »

It is a zoom in the Mandelbrot set.
Logged

Kalles Fraktaler
Fractal Senior
******
Posts: 1458



kallesfraktaler
WWW
« Reply #8 on: June 06, 2017, 10:28:46 PM »

Fantastic!
Logged

Want to create DEEP Mandelbrot fractals 100 times faster than the commercial programs, for FREE? One hour or one minute? Three months or one day? Try Kalles Fraktaler http://www.chillheimer.de/kallesfraktaler
http://www.facebook.com/kallesfraktaler
hapf
Fractal Lover
**
Posts: 219


« Reply #9 on: June 08, 2017, 11:19:57 AM »

Looks cool.
Logged
Pages: [1]   Go Down
  Print  
 
Jump to:  

Related Topics
Subject Started by Replies Views Last post
Central Scrutinizer 2 Mandelbulb3D Gallery lenord 0 335 Last post October 29, 2011, 07:50:05 AM
by lenord
Central, Aura Images Showcase (Rate My Fractal) Eric B 0 414 Last post October 09, 2012, 07:15:03 PM
by Eric B
Central processing unit Mandelbulb3D Gallery Dermis 0 385 Last post March 24, 2013, 08:21:20 PM
by Dermis
The Central Position Fractal Science Kit Gallery Ross Hilbert 0 304 Last post March 25, 2015, 09:02:43 PM
by Ross Hilbert
Hyperbolic tiling with golden ratio tiling pistil Images Showcase (Rate My Fractal) Dinkydau 5 794 Last post March 09, 2017, 12:55:07 AM
by claude

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines

Valid XHTML 1.0! Valid CSS! Dilber MC Theme by HarzeM
Page created in 0.144 seconds with 24 queries. (Pretty URLs adds 0.011s, 2q)