Kalles Fraktaler
|
 |
« on: June 20, 2013, 12:04:11 PM » |
|
Re: -1.99977405903814112888519985583417640720225322571990799901589644225393865533605228598627915530756458368930294382319946086288695748127828553306324966077440295098420825815105593484323418855439779452811721420096962962975485173673235237024654742932822397151663320858571766154417494332488104201481237615170278559430315893931355956579735048038357708478731475109370478590537776743808112340166715971391885220769909402720766616598659777719687354774890986285916545734560685727465952855902000745634225724211934300225494560067004164439188390819272159520340818858567220284934390505545142680738897179469121669733621832988909184507385788912701835957825609635584124435592611976072763295735023962287136041771531437352097362528919874248683758472168208516934208874895060798052210053027622146692020443900159403518406079944210876865233248265842379740177152489534792251798885064635762995493939187422468999436757649032709399498346882883281571539026205282593625751631801668035401381262726210948777435332696800610185801441369658503446021066526110936062774991471181902743442374271234670977313325796083214333284081652588722928327365898777974687541597244027059185832420875051035268841910313143058026785170961416311724474623561721345671244345932227625540241738880325377408768195664961599075923979362076315469040496032112951435840808387286845395320391344028183754896408407150448684415967183381327524938349717623260080720235863557903570726138669067293986113538735156224922901092390592778376183270749164800832284167498966571024191934930683564958647613537401748361308998960396863903539761196271007825135434520409528693874114568204564558409218094243398924883370170397660021900334586130073660676541451836423522497181379272662183248173340976744134768037266676675431242317598776265556844898787818037587068597560753211523105617901718899620154142474742482774643824866258810057296797233918928763344729019090682446017910526257102199198947713112242033534972589491812999717726580463158562261855634971727881207285821161086367560196386792903862530466242579796399833703299257443338730982321200680598849308897781507314578241101397261521803665699844020295135860413714935476153486623197024088198889540168935543002333334110438060107720583436823295563033879107753883038035093149508236361731106306011685481507164444115543769528415960184405140036376674490010645198740534270750391084916295123943644061931070342476674010612080604025011397098396354863232637917560726894984414891135668663024927194639210960261987245075563354336283495364791111570875166207405063009364719769571653917375599496802116951979656566238850434791934276030859382256351185350290924539023055981770723748703465395830568998601194128510280897053743890911837837665723663598116609331705713465714610425913657947951775711380573034621925024705809244717971641134791556638527533921939902217566033316699730872477741088470357491100932024173910396073388413557670586496046185361683861642031104610943948978106428130105640622074671551086798496500018858132604120743812200056258947175236349635669037166434220035003793633399612347205288577 Im: -0.00000176503450734692963234965831540374761683748564889524486892997564055727240162689828049004813792393198591658405232215480745916541882947621660640960937741076977912560535547332490428199438893619308890835557387805667343068276784059209879494156062220970365391573952554489954928231531354423243453331854929005709344063121583490326677538401691260552278792020879407088443368844776215022145180824396173578826622518837352534949525475618975394144651548484701849643859228408060015415312398473470408306674603043113829241902928532308217848716746208103048300536843589599997144132102696796785217956277522586225846072383722050621913718337606796864415768641416173691504736238940536708735443275558945929397693974329583754860372697648946985606779702969714947912798290879856823490113291915723657483568511719443809132462728137577267195837093084926984188894289235151782673909958397325959661987863693026464847117752917665202835722710440882926296542118282382407706148847784889388170870658692544705899239398356296458048485569752109071485190444096180243622738876663003402881265949762164323078894053709391605477859907861545081931240086733271186937534272970137307450572907049056144197707861598860978195666726208228545386639177021516980516721144504087460704275986209824479067361777098595648376162506680858981242706230835857685444205466784494959184875764085685934067055278438283172486727059201903599242617988350484675224466051640601019112468318202127037720408360819126083157207814885577840559272637236796404691243734518307365912870963291835453041360827235820817423110725324909166535759919589508295366069274801817768877477093989492330462567102224072187945463664521149097907912126261385319339565136400842018188106144523343096944510626830968190427421367836056626030989167728136230635568961379987983098154900275948128098307972942051654043036389321648028501230388480627344199548850991684978761318644890223922538706743728602105281761469027744642377301880546090989093931595507007431283738867419333490604318753270780137570963363882535441185734175229924150421932041210554796418386639703824186717164568639106916860352487235044925380593061722514870252112780154770955143211537534780066111358678316308028929899280765487799838090531507788199851317589461722044044471995185742343685090295147366964721168271305263372770964783249942475403129038407151999468090596493125679162033519453088829253032314596184774100651811808968104006096328222575273560441432286655038276640131134115751311267538731012065477150485052152694790691902991122314111105545522513776711955445676949982131834153568870303516578218271026073598384259904244784648458353503153082961623443737748697199392359583114996663258121502814419351833051201652677350102856194311413278551381158194740150124477617851004008186800123326484805820923966829593797016192795233003353406539442260390276912810222328720391458392018454043763367532648034807998882466131973628874548179662526285235320520366666005297331834750183919654248318168587846183907771519671863753278640723298890880289667237520970995503748906176771027386665079916570904969
Magnification: 1.26E3005
|
|
« Last Edit: June 20, 2013, 12:15:12 PM by asdklfjdf »
|
Logged
|
|
|
|
|
Dinkydau
|
 |
« Reply #2 on: June 23, 2013, 08:30:01 PM » |
|
I'm pretty sure this is currently the deepest image.
|
|
|
Logged
|
|
|
|
Pauldelbrot
|
 |
« Reply #3 on: June 24, 2013, 05:20:22 AM » |
|
That might be difficult, since I haven't actually detailed how to perform that optimization. It should be possible to combine it with perturbation, though; it works on a completely orthogonal principle. In fact, it's the only optimization I'm aware of that exploits the M-set's self-similarity in a non-trivial way.
|
|
|
Logged
|
|
|
|
Kalles Fraktaler
|
 |
« Reply #4 on: June 24, 2013, 12:12:15 PM » |
|
I have written about my super program too long now, so I have now made it available. http://www.fractalforums.com/announcements-and-news/kalles-fraktaler-2/I am too exited to have the patience to wait for my e2000 zoom to be finished, and it's ok, you may precede me on the deepest zoom on youtube if you want. I accidentally shut down the power strip to the computer so the e2000 zoom was not running for a couple of days, and it has a long time left until it is finished. I am also making a zoom movie of the image above, to e3005, and this location is much simpler than the e2000 location. I think the e3000 zoom will be finished first.
|
|
|
Logged
|
|
|
|
Alef
|
 |
« Reply #5 on: June 27, 2013, 05:44:11 PM » |
|
It could be deep, but then its just noise around.
|
|
|
Logged
|
fractal catalisator
|
|
|
Kalles Fraktaler
|
 |
« Reply #6 on: June 27, 2013, 08:27:44 PM » |
|
No need to be sceptic since I provided the location parameters so you can verify it in other programs 
|
|
|
Logged
|
|
|
|
Dinkydau
|
 |
« Reply #7 on: June 27, 2013, 09:13:50 PM » |
|
It's too deep for fractal extreme and superfractalthing. Probably only ultra fractal could render this?
Anyway, you must have much patience to have found this.
|
|
|
Logged
|
|
|
|
Kalles Fraktaler
|
 |
« Reply #8 on: June 27, 2013, 10:19:56 PM » |
|
It's too deep for fractal extreme and superfractalthing. Probably only ultra fractal could render this?
Anyway, you must have much patience to have found this.
Clicking to e1500, then automatic find of minibrot. 
|
|
|
Logged
|
|
|
|
cKleinhuis
|
 |
« Reply #9 on: June 28, 2013, 01:43:27 AM » |
|
lol, @kalle i am very disappointed you changed your username to such ...  shouldnt your name be just "kalle" 
|
|
|
Logged
|
---
divide and conquer - iterate and rule - chaos is No random!
|
|
|
Kalles Fraktaler
|
 |
« Reply #10 on: June 28, 2013, 09:12:25 PM » |
|
lol, @kalle i am very disappointed you changed your username to such ...  shouldnt your name be just "kalle"  I wanted a more serious name and unfortunately Kalle was already taken... 
|
|
|
Logged
|
|
|
|
Alef
|
 |
« Reply #11 on: June 29, 2013, 07:34:24 PM » |
|
No need to be sceptic since I provided the location parameters so you can verify it in other programs  I'm only sceptical about how it looks;) It have no nice patterns around as in Pauldebrots explorations so it's just like mandelbrot set.
|
|
« Last Edit: June 29, 2013, 07:39:31 PM by Alef »
|
Logged
|
fractal catalisator
|
|
|
|