Logo by AGUS - Contribute your own Logo!

END OF AN ERA, FRACTALFORUMS.COM IS CONTINUED ON FRACTALFORUMS.ORG

it was a great time but no longer maintainable by c.Kleinhuis contact him for any data retrieval,
thanks and see you perhaps in 10 years again

this forum will stay online for reference
News: Support us via Flattr FLATTR Link
 
*
Welcome, Guest. Please login or register. January 17, 2018, 06:58:04 PM


Login with username, password and session length


The All New FractalForums is now in Public Beta Testing! Visit FractalForums.org and check it out!


Pages: [1]   Go Down
  Print  
Share this topic on DiggShare this topic on FacebookShare this topic on GoogleShare this topic on RedditShare this topic on StumbleUponShare this topic on Twitter
Author Topic: A Gray code Hadamard matrix self-similarity  (Read 2912 times)
0 Members and 1 Guest are viewing this topic.
tftn
Guest
« on: November 02, 2006, 08:42:24 PM »

A Gray code Hadamard matrix self-similarity zoom movie:

http://www.mathematica-users.org/mediawiki/images/2/25/hadamard_64_zoom.avi <http://www.mathematica-users.org/mediawiki/images/2/25/hadamard_64_zoom.avi>

Herev are two together ( bigger file):
http://www.mathematica-users.org/mediawiki/images/3/38/hadamard64_32.avi <http://www.mathematica-users.org/mediawiki/images/3/38/hadamard64_32.avi>

New movie:
http://www.mathematica-users.org/mediawiki/images/4/4d/had_P_GC_64.avi

My observation is that these look like Wolfram's CA's.

Documentation of the math:
%I A000001
%S A000001 1, 1, -1, 1, -2, 1, 0, -2, 3, -1, 1, 0, -2, 0, 1, 0, -2, -1, 3, 1, -1, 0, 0,
-3, 6, -2, -2, 1, 0, 2, -9, 15, -11, 3, 1, -1, 1, -4, 2, 6, -1, -6, -1, 2, 1,
0, -2, 7, -1, -11, -3, 8, 4, -1, -1, 0, 0, -3, -6, 4, 18, -9, -2, -3, 0, 1,
0, 0, 0, -4, 3, 19, -29, 11, -2, 2, 1, -1, 0, 0, 0, 0, 4, 0, -25, 16, 26,
-20, -4, 2, 1, 0, 0, 0, -4, 11, 7, -63, 63, 8, -34, 15, 1, -3, -1, 0, 0, -3,
12, -23, 46, -123, 176, -74, -64, 84, -32, -4, 4, 1, 0, -2, 3, 9, 43, -263,
397, -259, 119, 17, -134, 32, 56, -8, -9, -1, 1, 4, -18, -36, 157, -50, -220,
78, 226, -64, -141, 20, 56, -2, -12, 0, 1, 0, -2, -9, 31, 85, -265, -8, 382,
6, -368, -14, 204, 23, -69, -9, 13, 1, -1, 0, 0, -3, 30, -92, 6, 277, -30,
-774, 802, -208, 100, -129, -22, 38, 16, -10, -2, 1, 0, 0, 0, -4, 11, 95,
-41, -341, 210, 666, -1013, 445, -49, 39, 9, -17, -21, 9, 3, -1, 0, 0, 0, 0,
4, -8, -107, -16, 435, -50, -940, 694, 473, -630, 136, -68, 89, 6, -19, 0, 1
%N A000001 n th level Hadamard matrices for Pascal type binary are inversted and multiplied
by the corresponding n th level Gray code Hadamard ( some of which matrices have determinant zero): the resulting matrix is processed to give a triangular
sequence.
%C A000001 Matrices:
1by1
{{1}}
2by2
{{1, 0},
{0, 1}}
3by3
{{1, -1, -1},
{0, 1, 1},
{0, 1, 1}}
4by4
{{1, 1, 0, 0},
{0, -1, 0, 0},
{0, -1, 0, 1},
{0, 2, 1, 0}}
5by5
{{1, 1, -1, -1, -1},
{0, -1, 0, 0, 0},
{0, -1, 0, 1, 1},
{0, 2, 1, 0, 0},
{0, 0, 1, 1, 1}}
6by6
{{1, 1, 0, -1, -1, 0},
{0, -1, -1, 0, 0, -1},
{0, -1, 0, 1, 1, 0},
{0, 2, 1, 0, 0, 1},
{0, 0, 0, 1, 1, 0}.
{0, 0, 1, 0, 0, 1}}
They don't get interesting until 4by4!
%F A000001 x(i,j)=a(i,j)^(-1).b(i,j)
p(n,x)=CharacteristicPolyynomial(x(i,j))
p(n,x)->t(n,m)
%e A000001 Triangular sequence:
{1},
{1, -1},
{1, -2, 1},
{0, -2, 3, -1},
{1, 0, -2, 0, 1},
{0, -2, -1, 3,1, -1},
{0, 0, -3, 6, -2, -2, 1},
{0, 2, -9, 15, -11,3, 1, -1},
{1, -4, 2, 6, -1, -6, -1, 2, 1},
{0, -2,7, -1, -11, -3, 8, 4, -1, -1},
{0, 0, -3, -6, 4, 18, -9, -2, -3, 0, 1}
Polynomials:
1,
1 - x,
1 - 2 x + x2,
0 -2x + 3x2 - x3,
1 +0x - 2x2 + x4,
0-2x - x2 + 3 x3 + x4 - x5,
0+0x +3x2 + 6 x3 - 2 x4 - 2 x5 + x6,
0+ 2x - 9 x2 + 15x3 - 11 x4 + 3 x5 + x6 -x7,
1 - 4 x + 2x2 + 6x3 - x4 - 6 x5 - x6 +  2 x7 + x8
%t A000001 c[i_, k_] := Floor[Mod[i/2^k, 2]];
b[i_, k_] := If[c[i, k] == 0 && c[
i, k + 1] == 0, 0, If[c[i, k] == 1 && c[i, k + 1] == 1, 0, 1]];
An[d_] := Table[If[Sum[b[n, k]*b[m, k], {k,
   0, d - 1}] == 0, 1, 0], {n, 0, d - 1}, {m, 0, d - 1}];
Bn[d_] := Table[If[Sum[c[n, k]*c[
m, k], {k, 0, d - 1}] == 0, 1, 0], {n, 0, d - 1}, {m, 0, d - 1}];
Xn[d_] := MatrixPower[Bn[d], -1].An[d];
a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[Xn[d], x], x],
{d, 1, 20}]];
Flatten[%]
%Y A000001 Cf. A122944, A121801,A122947
%O A000001 1
%K A000001 ,nonn,
%A A000001 Gary Adamson and Roger Bagula (rlbagula@sbcglobal.net), Oct 26 2006
Logged
Pages: [1]   Go Down
  Print  
 
Jump to:  

Related Topics
Subject Started by Replies Views Last post
In The Land Of Gray And Pink Mandelbulb3D Gallery Sockratease 0 234 Last post July 16, 2011, 01:45:25 AM
by Sockratease
Gray Sadness Mandelbulb3D Gallery ZatoriFrank 0 135 Last post February 19, 2012, 07:49:51 PM
by ZatoriFrank
Two type of self-similarity in symbiosis Mandelbulb3D Gallery abbaszargar 0 236 Last post May 19, 2013, 06:45:23 PM
by abbaszargar
Bronze on Gray Images Showcase (Rate My Fractal) thom 0 103 Last post January 26, 2017, 10:05:54 PM
by thom

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines

Valid XHTML 1.0! Valid CSS! Dilber MC Theme by HarzeM
Page created in 0.236 seconds with 27 queries. (Pretty URLs adds 0.031s, 2q)