Logo by Maya - Contribute your own Logo!

END OF AN ERA, FRACTALFORUMS.COM IS CONTINUED ON FRACTALFORUMS.ORG

it was a great time but no longer maintainable by c.Kleinhuis contact him for any data retrieval,
thanks and see you perhaps in 10 years again

this forum will stay online for reference
News: Follow us on Twitter
 
*
Welcome, Guest. Please login or register. July 19, 2018, 07:41:38 PM


Login with username, password and session length


The All New FractalForums is now in Public Beta Testing! Visit FractalForums.org and check it out!


Pages: 1 [2] 3 4   Go Down
  Print  
Share this topic on DiggShare this topic on FacebookShare this topic on GoogleShare this topic on RedditShare this topic on StumbleUponShare this topic on Twitter
Author Topic: 3D image of the Mandelbrot Set  (Read 21711 times)
0 Members and 1 Guest are viewing this topic.
Jules Ruis
Fractal Lover
**
Posts: 209


Jules Ruis


WWW
« Reply #15 on: October 25, 2006, 08:00:48 PM »

What do you mean by 'cheating'? I do not understand your remark. Please explain a little bit more.

Attached I give you the link to the .obj file, so you can turn around the Mandel 3D in all wanted directions.

www.fractal.org/Beelden/Mandel-3D.obj

Jules
Logged

Jules J.C.M. Ruis
www.fractal.org
Jules Ruis
Fractal Lover
**
Posts: 209


Jules Ruis


WWW
« Reply #16 on: October 25, 2006, 08:10:11 PM »

Th users of Fi can click on the .fim file and download it.

www.fractal.org/Beelden/Mandel-3D.fim
Logged

Jules J.C.M. Ruis
www.fractal.org
alan2here
Guest
« Reply #17 on: October 25, 2006, 09:25:02 PM »

Its just spun around like a lathe program would
Like this http://i2.sitepoint.com/graphics/lathe.gif
Not even trying to make a good 3d representation, there is no infomation in that image that is not displayed by the 2d one. especally considering there are sevral much better ways of viewing the mbot set in 3d.
Logged
Jules Ruis
Fractal Lover
**
Posts: 209


Jules Ruis


WWW
« Reply #18 on: October 26, 2006, 12:06:42 AM »

I am really doing my best to understand you, but I do not have any idea what you mean.

I succeeded in printing in wax this 3D Mandelbrot, so in reality.

Please show me a better 3D Mandelbrot.

Regards,
Jules Ruis.
Logged

Jules J.C.M. Ruis
www.fractal.org
Nahee_Enterprises
World Renowned
Fractal Senior
******
Posts: 2250


use email to contact


nahee_enterprises Nahee.Enterprises NaheeEnterprise
WWW
« Reply #19 on: October 26, 2006, 06:43:16 AM »

Jules Ruis wrote:
>
>    Th users of Fi can click on the .fim file and download it.
>    www.fractal.org/Beelden/Mandel-3D.fim

Basically, this file format is still the same one that Terry uses for all of his programs, which is based on the one from the ZPLOT program.  I can change the file extension from .FIM to something like .QSZ, and then open it within QuaSZ.  Or I could change it to one of the other file extensions that Terry uses on his programs so I can open this parameter file in those other programs as well.

It shows the formula used was:   z=c#/(1*cos(1*z)^(2) - 1*sin(1*z)^(2))^(2)
And it incorporated the "cloudy background".
Some of the settings used were:   F(600)t(5)GFX[?(.5)~(30)-(30)t(5)G][?(.5)~(10)+(30)t(5)G]
And:   X[^(45)F(400)][&(45)F(400)]FX

If you open the .FIM file using Notepad or Wordpad, you can then see what I am talking about.
Logged

Nahee_Enterprises
World Renowned
Fractal Senior
******
Posts: 2250


use email to contact


nahee_enterprises Nahee.Enterprises NaheeEnterprise
WWW
« Reply #20 on: October 26, 2006, 06:54:07 AM »

Alan Tennant (alan2here) wrote:
>
>    Its just spun around like a lathe program would
>    Not even trying to make a good 3d representation,
>    there is no infomation in that image that is not
>    displayed by the 2d one.

Yes, when the parameters are set to create a spatial 3-D image a specific way, it does come out looking as if it was turned on a lathe.  But that is only the way the User has chosen the view and settings.

When other values are used with the basic M-Set formula, then something else altogether will show up, as in the follwing:
    http://www.Nahee.com/Fractals/QuaSZ/Images/3DMSetVariation.png



As you can see, this uses the QuaSZ program, which can be downloaded as a FREE Trial program.
« Last Edit: October 28, 2006, 09:44:55 AM by Nahee_Enterprises » Logged

GFWorld
Fractal Fanatic
****
Posts: 329



WWW
« Reply #21 on: October 26, 2006, 07:58:39 PM »

Jules wrote >The users of Fi can click on the .fim file and download it ... www.fractal.org/Beelden/Mandel-3D.fim ...

Thanks for the file Jules - thats my first try with FI now ...
I dont have any mathematical background for discussion, but I am always curious with Fractal programs smiley


I rendered the .fim file here with 2560 x 1920 Pixel.

The 1920 x 1920 part is online here ...
http://www.graphicandfractalworld.com/Fr4/Mandel-3D.htm


Margit
Logged
Jules Ruis
Fractal Lover
**
Posts: 209


Jules Ruis


WWW
« Reply #22 on: October 26, 2006, 10:10:12 PM »

For more information of 3d iamges see:

http://local.wasp.uwa.edu.au/~pbourke/other/quaternions/
Logged

Jules J.C.M. Ruis
www.fractal.org
Kizzume
Guest
« Reply #23 on: October 30, 2006, 01:02:32 AM »

Here's something I did in a terrain editor.  I also made these same things for DeltaForce2-4 but people didn't seem interested in traveling through a fractal in a FPS....  at least not with the crappy graphics engines those have anyway... smiley  I've wanted to find a way to get this sort of thing going in a better graphics engine....

http://www.infraxes.com/kizzume/artwork.html

I thought this was an interesting way of representing the mandlebrot (and similar).
« Last Edit: October 30, 2006, 01:11:07 AM by Kizzume » Logged
Kizzume
Guest
« Reply #24 on: October 30, 2006, 02:05:27 AM »

<Quoted Image Removed>

Interesting site, the image above is from http://www.superliminal.com.  I have invited the site's owner to this forum.

That's GREAT! smiley  I particularly liked the animation of movement in 4d space.
Logged
Nahee_Enterprises
World Renowned
Fractal Senior
******
Posts: 2250


use email to contact


nahee_enterprises Nahee.Enterprises NaheeEnterprise
WWW
« Reply #25 on: November 03, 2006, 07:33:11 AM »

Brandon  (Kizzume) wrote:
>
>    Here's something I did in a terrain editor.  .......
>    http://www.infraxes.com/kizzume/artwork.html
>    I thought this was an interesting way of representing
>    the mandlebrot (and similar).

Greetings, Brandon, and welcome to this Forum!!    smiley

May I ask about some of the fractal generators you have been using to explore and create fractals??
Logged

Kizzume
Guest
« Reply #26 on: November 05, 2006, 09:18:40 PM »

I've been primarily using Sterling to create the fractals, and I'm using whatever programs I can find to work with 3d terrains to import the heightmap version of the fractal (a lower-res monochrome fractal) and the bitmap overlay (the highres version of the full color fractal).  The terrain program I was using in those pictures was from before a hard drive crash--I'll have to figure out which program I was using.  I've also imported them into Delta Force 2, Land Warrior, and Task Force Dagger. 
Logged
David Makin
Global Moderator
Fractal Senior
******
Posts: 2286



Makin' Magic Fractals
WWW
« Reply #27 on: November 16, 2006, 12:03:10 AM »

Hi all,

Just thought I'd point out that there are various ways of viewing the "Mandelbrot" in 3D.

First of all you can take the standard complex Mandelbrot but use the real and/or imaginary values of the start value of z as one or two extra axes giving you a 3D or 4D object - this is in fact the classic 3D/4D "Julibrot" and does not appear like it's simply rotated on a lathe.

Secondly one can use quaternionic numbers instead of complex numbers i.e. using q^2+c instead of z^2+c where q is quaternionic and z is complex. Quaternions are naturally 4D so you can view part of a quaternionic Mandelbrot as a 3D figure i.e. this is a "true" Mandelbrot. Unfortunately the default figure just looks like the complex Mandelbrot rotated to give a 3D result.

Thirdly one can use other 4D number forms - generally referred to as hypercomplex numbers or Cayley algebra. The classic hypercomplex 3D Mandelbrot is actually a squarish figure.

You can also use algebras with higher numeric dimensions such as octonions.

You can create 3D(/4D) Mandelbrots in Ultrafractal using the "Solid3D" formulas from my own mmf.ufm or using some formulas from Stig Petersons sp.ufm or 3D fractal raytrace from Ron Barnett's reb.ufm (all available in the Ultrafractal formula database http://formulas.ultrafractal.com/
Currently Ron's formula is the fastest but only allows colouring by lighting/shadows.

With my own "Solid3D" formulas you can opt to choose colouring by lighting (including optional self-shadowing) or to colour the object using any Ultrafractal colouring formula - this gives a huge range of choices especially when using multiple layers to combine say "Orbit Trap" colouring with lighting layer/s.

All three choices (mine,Stigs and Rons) allow Julias in 3D as well as Mandelbrots and a range of formula options.

If I've missed anyone else's 3D escape-time formulas for Ultrafractal then I apologise for the omission :-)

Of course to generate 3D escape-time fractals faster you need dedicated 3D software such as that produced by Terry Gintz.

Of course there's also the possibility of viewing a complex Mandelbrot in 3D by using the usual 2D colouring values as a heightfield.
Logged

The meaning and purpose of life is to give life purpose and meaning.

http://www.fractalgallery.co.uk/
"Makin' Magic Music" on Jango
David Makin
Global Moderator
Fractal Senior
******
Posts: 2286



Makin' Magic Fractals
WWW
« Reply #28 on: November 17, 2006, 02:10:02 AM »

Just thought I'd show some more images of the 3D Mandelbrot and give the Ultrafractal parameters.

First here's a different view of the "lathed" quaternionic Mandelbrot:



Here are the parameters:

MMF-MandyQuat {
::EvuGNhn2tf1SvxtNQ47Gw/HE2Tto128h4rWwDpNIABI5QR75GwdXpdVjeVJu2ezv+OUicEd6
  hmeOBIAZnhz7v5hc9k7g31+T3eTRhvx3WZ39+3/mi7Kevr/41f7izvr4pmj+zWZJp4cVzpz+
  lf26uWNNbZBFPMVdsxPb39a3jNHBV/YT/PTpPQlPwIE5ubvZR6Fn0V5PPc02dp13M6mnLO4G
  9ND92dvLITBdXxwo7Qj/qlSIF+JX/8obqq3bvWNvahpTVdDHriGp96t305GHb6Pt4hDgsVTW
  yDkiO3peL9ext3UPMBS7WDB3zNBJolFjVTHOXd4j2h66i6m2qeXHUC66qv/Sd3ug0g1muuUV
  8397DtNH5vOUWqm6hoeeXx4HqXrh2d/9fy+hDBOjPNZ5PQCqvQQXimxPAhQdz0s32PEoClYb
  oQX1ufawDs27aaHu4tl3HV2/8V7dk7liF99fySuP8jp0/Ttslf8YT1TBtChjlyQ1hQDADoGE
  e5wFf70qvbrq9Ap9u1XmC4agGF0vHEc1I79dZi6HGfhg17XtY90QfuJ3DeOK4qZAi5DOoDDV
  NgUTVxaDSTj5W3wjVBDkCDoCtSuKMQmkclitRNPeuCM8ioTvIIWf5FOOnVuvRjguP3sHah23
  22QTJQdsyDInltYvO3kPyvfYfTvD6fwaZDg2jw4EVGMyZX/poBjDGvF6schBiV0b8RX7S3Di
  njZJeUAWMTivyye1fdsCaxO134vcsa1IXmrA3GG1fVbbxyPX6jB++zTVznHaPuGTbkkwQUQ5
  umewjANNkqh5B7fkkC4sYNopkdvIRxgyyquLk8Y0BTcg/iEPfAmlSEXzJ+UkY1CPl/0hBYWZ
  y+uQvLM8Dca6nbg9C7+un/xrffIlcd7bCrOgwNG/HbqrhENkQiFwH6xadh5Jekcu5TVWxqHa
  ddjp9OwQzy2vfFWRM5iNJrsWHpC/kalrB3CFzyJpOvFGcrc71y4kw8Z3xhnCR0ab2CaW/h6e
  qFyme/t3smXrLpDLErhtXtN9VupPfp1h2dZbsc3B794vG2jBLV+3mofovqYFDhg80k7YoYtI
  zc3wA0lG6iDdsPbJFhy9kVwiMYSdklhRkSpJynbMLbhXeiKVKFLU7jL1zNOU1S2OtynJEfZH
  L+FY7ypphL9Hfx9ivdJ4bXC+2lgvWvE82l1kv8OAEQ+vGPFw/8bB87eTTV7x3ByOvbNOeE+C
  +w20X1GWiB9aPGKejDPB2cdZyfdptxtmTzfsZcZZZMJqbeOwapf+/66SJzUakKmR8lemRSoU
  NPdTpMytkxIamOyVvdnhVy1EjK+AlFZrJCFhzTsNJ2KimLopDZkM7QLFlw1g4LikflEhgLTX
  4SBZQYOnvcvL+0mGUGnlMUJqBhKUa0BlisTllGuhoFxnEoKMlE+DuSJtQghqWbIiNfLzCLGR
  lSPZSBKlTBDlufreRaTlSayFqkGKOlzxISnsvSI1lGSidWOYg79bomB/mBCgDlpkGgpk55GG
  NLDC/BfpkWbEGiEfQgf+BH+GhEbaWOQZCFkfYPAFVhzVlCsJgh+gzlcdm3R4WyICJWxpb4NI
  PvUjugnl6Ab4fpiLFR8SF3AACyH9RI5ZsM3jIuiB9gG09IizLFUSJyXmDgSOdz5IkrLBV4oG
  qkHMGGnwz8NC5g0gYbORTyaPlEOFfIL3VBwihlFE3ZsS5WjC1k5ENsQIL5ZIyLgMnRNIfsdH
  +5WTNLH5FQ2jdXME3VwgMaHWalQJsDhyQ7wUZphgq4KUFE21atA+qWkPChSF0nSyyit58439
  iPgpeZJlZMbbYy7ghdGw6N0RIwXGagxQGnzhNSMqMz9bj6Q7gmRQvgAP0MZECKaLVeHMVUKx
  mbWGyLJSQP8hsZRYiLb7Hzs5HjGgRO+AGZwiAcRDnkl9hNNqsdsIwrhJeSySc624L0EkN+yR
  gXShtya0S4APssRu5AWWqLhyrygPlNwTpGFC9cE61Mo9VkNBx3g+Q3IRhGDhe4Gogi7h45Iv
  hz0Ylnj4OlA31MoGZL4Ja40jKz9I0LECtA7h4IyD7l5McPEPH4BYDO3igiebtNFGW24LyAXj
  Sk14zRgnzMaoLC5vN+WCAR5/r/Ow/BgD3gWE
}

Here's one showing that the "lathed" effect applies to other fractals too - this is the standard quaternionic Newton for the roots of z^3-1:



Here are the parameters:

MMF-QuatNewton {
::fnLgJjn2tj1SPutNQ47Lw+fQwnSB66lP0zWwDpdbASR2UU0euB0SU2sRvqE9617v+O8lE1GE
  0kgW0DxnMHSOfzwhz8NiuekXq4Nf31XFFpkqGBbz93/qobi+1jc1bFnU9dbiOJrUHYpxooDC
  5+DKWcOKqhfWMOxi1aWOKqkqJ2m74PIriun/eZ33jx3iTvlgQpbu+KzuNWpVoO0XxaP2okD8
  ppoS+gS23x28G9eiobi6H4lS1ZGGhgtPuX02XJYNaTL6u+qW+wgsbvBtSRnSMyQ3C7kvvjh3
  iu+q6+RAeu1c8Hl6dgRRDixyDiy3z6rrjqlNiOeLcebbr3esudje3AajnNhA1N/WfjsienOQ
  IG7APcaT0w7qtBM2Gbw5F/B9b0TPcakRvFpxwIgNu0w7A/oWOOpYd9aJeX1Z2PfsRyBpdcZT
  /RIauVvT1jn16YRQ9EDZmd0/LmRMDeQKO50omhtzpAfCi42DvW9yjqmRrJbE1KQkdD2ijOIq
  ltiwI1O7G3pa97z5D9Dr2Ytbj1j9dhQuDM+qNOVyh8oQnRfLNKchkZZs7s12/gQDgB9xeld8
  sywM+dalILSTDHEAwWNdOhVR7KrMc4Uh2eGErmgFChtsBSTbaYnFTgUlQB3aMiBvW+oyNfX/
  OZHHyd8oAiViBoshQ1gcg3t3BorA41QWFXn4bvAHeg3gDSAgZCO4uNQcnE3qkgVVnHEs7hSA
  p6YlwCyxJBYWdN9LbaiMDN5ww8qDjipD9NVWfaREtNxqcrsDsIIj1HVdtA7397CmxgGkUS2m
  4lIMqz7NiUn3BVbg9cCPWC1Rw1EM8sdod+ncCW9PFuUZPUlMyejOzFK7hZkdTSgQYzLe8bPb
  q+4t7kw1q2ZdeflsuGOmM79Oke1w1lS5JO5J5TCDnAc/ybHc3iGKG2PC0CjcXUAyPszarm0D
  xsUrnZk0n6FJKLdRIOId8Avq/kO6azwMXk1vruDzgjSn66rsHKLR8IvbqGItakdC+4z5qKb2
  EQUxvBo7o3B0XAXyHCRXfnIye9FTyR5kkiY61XtfkXpDZmNP123DZqwJUn0+IE00xcIe5kpF
  FuZwpYCOPBCyOO6Pi+eGcierf6c/4PG3vVjmzXI/vQ+fh8/C5/nI5/Cfvl/Pk8PZ7K2frmhN
  A+MY/DU+DbA8/N7/XOZfMBjJ55/HR2TWI7LoBc9QMfEQ5CV/Fq+LU9f9R1/aDT4X9E90nz0T
  3dzLb0MUAN1r+h7f9r34KA0VhGqvwMtFWaoQGyYbeKcct8xgKIzW1hx7kPoZh7U6g9RgXo/k
  wRvYHScEBW+McqHCt5tJRIn0J7fUUiLC2v36hVPD8y56In4KLgZ4f6mkQvu0FnBvts+Y1+lq
  ZjkfZ+upSXVN4WHBSqbRLuZJDF64WXt8Z+a5sz+0O+EQ6+LQzEQwS6BpgOzyhUUcqjjRnuCB
  xocT6KEM5gH+WoLFvRHoFiKgKnGnk6supn2bs3+2WO+UnJ3gKZpwdoqO22emZN04wh5Tu4xB
  3OaEQW8EjYSE7PB9Pnc36N89IHDm2KIA9MUm7MMOh8xt2h5hd7Ru7Tt24AtxOtNqiXSkAtxL
  aPzZoVnEoOJUdyK1JLqDDxbJe9pB6TD1nuSf6i+UGluNzrfcg+xh6HvS/4F9j13q5zAkEAQS
  IAJrAIZBgE4Lp2SnBINAg0QASXBQ6CApMS+W8cIILAgsQAyWBQ2CAZA1X6s+5B6nHqfuuobW
  /cXiHofODXsNdJGUEgQRICFrQoYBhCGNdbyiPgDTCxoV5RoVgYW0hCMOfb8SoEvKZcd2IW/N
  TLooXk4hByIT2SXio4wsS8q0SQaFOkQcgUTYxgTVY2JeV6JIlHijeR8MQUdPligDWYaKO+ZF
  p4YPRjGJ9qOfQDVME9yDOaJLt6MgtKnFkokZk0LhoLeVCLmsFDX7f2vpQ782HFQy8vhIpggy
  JupxIsfeSGKNBn63P2EksrRzzLIwTCcvHhQWwKPGll+v+7R+B4Lb3P2fsra1//0lXgc5FIXe
  BylXg8VwLQm+rR1/07Pu5VSRTl+rVncP9A+A3JNBq/dJwzHmfqg28/pm+xl2O9e5ghe0dCgP
  mXPlJL+LuNTWur1QWSWRKpwNdhv7TMCXgKw+uP44lmMJks4s05GTEPSQLKo3DO2vANZeBKFh
  SK0Q4Xz/PllnkQp5+/BNccsb+UaROO27W4E6i9LiJgRz8LlS9zTyoJxzucax8JEnmSTCseuv
  vYaWBGTm94CfP248iMSiHKCKw6g/mGjL+s6k+3AwgxlP
}

Somewhat more interesting than the standard quaternionic Mandelbrot is the hypercomplex one:



Aplogies for the small size of this one - the link to the larger one fails.
You can see the larger one in my "scraps" folder here:

http://makinmagic.deviantart.com/

Here are the parameters:

MMF-HyperMandy {
::nso8bhn2tr1SvNuNQ47BI/HE8pW0aFRSR9oF8wuNdRDwmWgu9cXQLRZLsUPgkcid+13hPkIl
  L2DBL6eYrzFzhDnvZ4whznZSqG4FTc5Pd7NBBT1TSBbzjP+ugtB/25exwj82yzbCeuuc6ALJ
  KK4goe/hJWGMUyPLGGZxKLLGEl1TjsN3zfquM4R+nqb/ZE6OUyd4ookN3eje1av0ImO0VyaO
  Knq75jjBF8+p6uW2m3rWTAZTQXPvoe6MDjDmG4tj98BR7E7sY0AwweRTXpgdgPUKVB0t30w7
  7rb3r9QBsYxAbbUYUeEJNikkeXUIKmkggfCa47bZow4UMJHnEwb3D768obvpqbAiKuJK5nqV
  ggwBQeo4go4Tsuqqgqapol3AppmmqwjVNbUrGc4wZdm742P0JrLJ3rzfFdN9SxpNB9fsykoZ
  bO834foQbV/HbU5XmKLLk7G6mgp+EjcXE8pkFp/cHvW2dciFDjnOdWtroaFTvwgNoBHYziUf
  gY4QlunqFPzi1DrYU1iBvDnJM1qKOOJHYtdGTliqJYGAA9yHUpTlsREGNtDWrKQma8W3UXvd
  VGYAhK7CrG6a9hcH46VIOWwhMuvpqTsBhdHvIjUbQVWq7JhCAN6QWyMexYYm5VakwOpx+DCA
  YjlrCYjmVO2fKffvAiNZ3tC2CJUGLlqqTQqUMBHYMkx6xG+wkVTb3u6WOUmMjDIWK6hLWYiC
  mDQhoFS7VkHgCQu6qh5As/JuEpCVj5qZ8262Fgt7FrWsn2JoiEq123WPdsUYApq+kSlxtHHF
  mLDbejUauXMuxM/0hBx4hOZ5S07mBKIVxcdL4eQQViNquDw+r5lAzoRDKPtBvWEzIRzjJ2AF
  ujBezKcqordcW48igBiXsywwn9XXRHcfZg9eVhM0RAmpudsG6Ws57O9jn/e7NPezuaVPFIeV
  RfZdVFsNZmyAoaTyHAdZWxx6XgCWN6SeT/cnI42jud4vANEG4/wfCdlmE2iGjGdeVPEx2GHN
  Lg19bWAgwSCX0FD+Fr87BeZ3z2sLcUqPYr+YVLiB7m2Jl9KRMbsu92bMbSTfcVPzKo5lsuVw
  HusnVhcjXDL+WotH5eItAdZ+3Q021KCMHnReA9hJonF09dFa3Lq4QXdAq9D8SV6Vj1YTXHUl
  ruFoq4PBApOjgerosYcasd285pxZ48o8c704EqunuWVGhSThW4GVEYRWkSijzwUInapO8dMc
  GM73FiFK91QJhdUSIg5zRApPwEtXpfuS/cl+5K9zV6n/DpfAqiMMKKG6Z+Z4h8aF+NLVE6zR
  FZsQe+KX0VuorcRX5i+y5iCp0V0R+kR0lK2ZCpXPbkHDkiQ6VzGNzAZJk+axG9/vHB9Wor1+
  hujtlrIfuy0clp5KTzVmGPmmH09d/C5ZCJfDy0Qukqhsb7bkQtWLfS8u3+4DPYzS67p6ug+V
  iuu4qynWu8F/xQBl3dM9SVZ27rfS98gWVHO+Ro5R3zaSMQ0MEH63sDlMDhy9m6qIr0zm/uPU
  zMyu9mIs8CwLWqUtir8Aih+1tU/ouw2fCi2iqjl7d331Szq57GLs37hw6I0G7uIXYW4KPdha
  xFxaxSw+yOOcyx+DgXBEMtFhSSrb5QVLKx2FCG/7A9EXqiBIXy37NxoQUCMVkYai15aCw3bO
  8NcPAwpRpaWiR7epsuQMP8YTzZmN0b6G6tHwiT92VIFQF9IzUX29Mw3OaP3l89RufPAKfF57
  so5MXT/yw29R2TUl1o1Wj8tG5sG5sGakg13KUmjXbO23cszcszcYIKEPbPZt9Ef7JO7JO7JM
  CJMd2+412H7bfsz+Yn9xqz1sFAorBg6DA1BA1BAF+uWhkFASWDQiPAJOAScAkAfruQ0SKIdN
  Ap+Ak6AI1BQK0NMZx+s12n5bfm9mHYfmtXGYfGDlHm4yB5rRI3HhcHC5OEyZkkQqLGQXUEiW
  VFCSLgo1YRBGnFG7SloLLGXXNisfrKFKKN4ZYgKSaIxlRRXUViWVWCSOcw+4AlmgGvd1FVno
  VlngU2COKNoFgga0owcYjZtVhVslzSD0q6UU8crGFSKVqYYhrGmBHm5t7o+ItqgFkI45mgKw
  UajIuAjyixhoMVg917lNRUSecaida688JECOKhYnOD79ymMCJLzqAhILPsJDRjpzzHnannAP
  RaGdUWiDHC4Ca6yjnwLeGhzpLOATxzrngyTR6/TGsqyRzqiJkE8cwSizmnPPKOGenyyjwceP
  BRQ6nH9KeG2/AkGLATK=
}

Finally here's one way of viewing complex fractals in 3D - the classic 3D Julibrot where the 3rd axis is taken as the real part of zstart:



Here are the parameters:

MMF-Julibrot {
::IKscGin2tX1SvNuNQ47BI/HE0pWsx2kUvsbBP0msFYXs5S390eoB0SU2shiUgi2xO/67wHyx
  OFtoLQRR3F6k4Ma43Mce8NtGWtlJ/hrvKJxKsSON9+7/lkZJvfnUs2otpJPJasbpl5oktcxm
  tWa+SUikdkbGo5u7Vb4NC7AN9O2eRTy9sHFqfEjXgLXQQoy0rvybt3Hdc7WdDtbn0K6ZDDJ1
  serQropfwZTCJNR3zqF2j0sVJWDTN0zMcllekPEAwsh3pb40tMTj0FQXfVHrvXo249QNYM3Q
  RLQJdsNKKeO66ra1GwlsQIwOIcWgxJ9cT9We9jUdbbSrQyVsOID011OfXbXqzaANzRfSxM7j
  apoJ7ub1d9S+h0k+HaDpPa6z/m6N1ONPSJLQuL2/QtWt3Ft07E+vKLocNTI17gk4cEIZPckO
  DPnUswL9MF5VbcfDgYwUiX3eB/p4tap4gOI/UDJb3b05vdWphq0wRJv1CiOsHxxlpcqOZrdd
  w212uRTdQq7vwqWnVBIaNal9MTXDO/CbHqZQD0JRXlwwdViY+YUFO+M7075OA8hB0rd6McAE
  xvkFCKIx75cV/WOgd4mvEEB1v2xnr9cffBI6LwsWCtnS5YXX/DNcLU5oEvX6YGfDJcWpXLUM
  oFJkLFqGePMugLdgslp2wPl/i9+vDa+Yue+QBsfP0/gWELn9QcEjQnk9YPneP0GLs7a4BY2N
  wBYdTq/kUm4POkG0b3a4Db1ymQ08iIaeRMGEKv/mjdvDX/M9TjWBaYH4wc8tmbuVcznN38Zh
  DYvLw0sY20LSAxxzZxAGGigQYsGph2cD9Du2OY0McVhaQATupf3hbO+9eo7WLcD3Q8U4Syi2
  W4ZQDlSo3QycjCLLGrj86Bxzc6SfFi11HLCeaA6tv5XfzH3ya0PNESHNcwf2jnKAyGu0yo43
  ODn7E7fyEHucdDBQODQc4N6PTozKjvfvcGtc+pfmTJuoz7aIcrKC9T+qa7DtKMFe1Kr76ORS
  Q0fOjOIUXfVIxEYhdcetA/kUo4MzrplqlpnxJxmBMbZ3BMVAnyfGClWxTCVZI43YYNust3mh
  OtG6TdPXXP7BIn7KZAtYGuYZJKqFvqKqvYFBnVNqPb1KPZb4KlVVVEMUlic3n7BoTc0BjM7k
  iivkdC4X2JgRoz2A4T+c1E//E//E//E//E//fD/fOZJweXhLJf9uII7vaRQ4GyjTbCm2EMtJ
  4bqNBA5/FLDe1mgigLm2F8PaXwXjU//Mwtsxo3paug9fiqfiqfiq//nU9vzzg9fERPM8aYfT
  yx3097XwxDyz+kR4T/+MZv+J4ekYFqVy2rdUBmOmEUE/bcqNQAhfLB9vx+h88qsC04ig8x9D
  rwISWxyo6qyXWPskkhxryG3ogWdCpMyyKUZ8Hk88xVNLryXlX5QIutBdy7lk8l4iRwyyHBjU
  RQFfhrg+DoEm1sB=
}
« Last Edit: November 17, 2006, 01:15:03 PM by David Makin » Logged

The meaning and purpose of life is to give life purpose and meaning.

http://www.fractalgallery.co.uk/
"Makin' Magic Music" on Jango
Jules Ruis
Fractal Lover
**
Posts: 209


Jules Ruis


WWW
« Reply #29 on: November 17, 2006, 11:19:06 AM »

Dear Davis,

Some of our members are expecting bulbs on each ax i.s.o. the so clalled 'lathed' one.

What do you think about it?

Jules.
Logged

Jules J.C.M. Ruis
www.fractal.org
Pages: 1 [2] 3 4   Go Down
  Print  
 
Jump to:  

Related Topics
Subject Started by Replies Views Last post
Image changes when resized Mandelbulb 3d Fossiled 7 1269 Last post March 12, 2011, 09:57:16 AM
by DarkBeam
My first image (here) Images Showcase (Rate My Fractal) LAV 3 745 Last post April 06, 2011, 09:43:13 PM
by Erisian
The best image ever Images Showcase (Rate My Fractal) DarkBeam 5 910 Last post January 24, 2012, 03:54:37 PM
by DarkBeam
largest image of the mandelbrot ever created? Mandelbrot & Julia Set simon.snake 12 8119 Last post May 02, 2014, 08:07:48 PM
by SeryZone
Mandelbrot Image Images Showcase (Rate My Fractal) CFJH 0 476 Last post July 02, 2013, 08:44:39 PM
by CFJH

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines

Valid XHTML 1.0! Valid CSS! Dilber MC Theme by HarzeM
Page created in 0.267 seconds with 27 queries. (Pretty URLs adds 0.016s, 2q)