Logo by Madman - Contribute your own Logo!

END OF AN ERA, FRACTALFORUMS.COM IS CONTINUED ON FRACTALFORUMS.ORG

it was a great time but no longer maintainable by c.Kleinhuis contact him for any data retrieval,
thanks and see you perhaps in 10 years again

this forum will stay online for reference
News: Did you know ? you can use LaTex inside Postings on fractalforums.com!
 
*
Welcome, Guest. Please login or register. April 26, 2024, 12:37:17 PM


Login with username, password and session length


The All New FractalForums is now in Public Beta Testing! Visit FractalForums.org and check it out!


Pages: 1 ... 4 5 [6] 7 8 ... 15   Go Down
  Print  
Share this topic on DiggShare this topic on FacebookShare this topic on GoogleShare this topic on RedditShare this topic on StumbleUponShare this topic on Twitter
Author Topic: Geometric Algebra, Geometric Calculus  (Read 12693 times)
0 Members and 1 Guest are viewing this topic.
kram1032
Fractal Senior
******
Posts: 1863


« Reply #75 on: August 26, 2014, 12:51:45 PM »

hermann you might want to look up "computable numbers" or "limit-computable numbers" wink

Limit-computable numbers are the biggest countable set of numbers. It's not quite the reals, but it's effectively all the reals (with few exceptions) you'd ever care about.

That being said, this is getting rather off topic now. None of this has to do specifically with Geometric Algebra or Geometric Calculus.
Logged
hermann
Iterator
*
Posts: 181



WWW
« Reply #76 on: August 26, 2014, 03:24:36 PM »

That being said, this is getting rather off topic now. None of this has to do specifically with Geometric Algebra or Geometric Calculus.

Hallo Kram1032,

you know I am playing a bit arround with trying to implement a generic software for geometric algebra.

In preperation I had to implement the n over k algorithem. As preperation for n over k I had to implement the factorial function.
A short test programm soon showed me that one comes to the frontiers for the implementation of integer on a computer very fast:

Factorial:
 0!:  1
 1!:  1
 2!:  2
 3!:  6
 4!:  24
 5!:  120
 6!:  720
 7!:  5040
 8!:  40320
 9!:  362880
 10!:  3628800
 11!:  39916800
 12!:  479001600
until know it's ok but then it goes wrong!
 13!:  1932053504
 14!:  1278945280

n over k (binominals)
 1
 1  1
 1  2  1
 1  3  3  1
 1  4  6  4  1
 1  5  10  10  5  1
 1  6  15  20  15  6  1
 1  7  21  35  35  21  7  1
 1  8  28  56  70  56  28  8  1
 1  9  36  84  126  126  84  36  9  1
 1  10  45  120  210  252  210  120  45  10  1
 1  11  55  165  330  462  462  330  165  55  11  1
 1  12  66  220  495  792  924  792  495  220  66  12  1
The next step goes wrong!
 1  13  78  286  715  1287  1716  1716  1287  715  286 -29  4  1
 1  14  91  364  1001  2002  3003  3432  3003  2002 -182  41  1  0  1

That means using geometric algebra in higher dimensions increases the efford rapidly!
I also had expected, that my program would throw an exception caused by this numerical overflow, but it does not!
Which is another pitfall for the implementation.

The idear of implementig unbounded integer I had in mind for a long time.
(I know that this has already been done!)

Hermann
« Last Edit: August 26, 2014, 03:31:38 PM by hermann » Logged

kram1032
Fractal Senior
******
Posts: 1863


« Reply #77 on: September 01, 2014, 01:17:20 PM »

I've never used Perl but here is a GA implementation in Perl 6 if anybody is interested in that
https://github.com/grondilu/clifford
Logged
Roquen
Iterator
*
Posts: 180


« Reply #78 on: September 01, 2014, 01:46:47 PM »

hermann: focus on the tree.  Don't worry about any over 5.  If five some ends up being too small then deal with that went it comes.
Logged

All code submitted by me is in the public domain. (http://unlicense.org/)
kram1032
Fractal Senior
******
Posts: 1863


« Reply #79 on: September 01, 2014, 03:16:43 PM »

since those numbers don't actually grow all that fast, you could also define n over k recursively via integer addition, using a "dictionary" (a dynamically extended lookup table) to keep that implementation reasonably efficient without using big num operations.

Just define a bunch of relations you'll need:
Code:
binomial(0,0) = 1 // base case

// (1,k) for all k - you could even ignore the base case since it also is defined by this
binomial(n,0) = 1
binomial(n,n) = 1

//(2,k) and (3,k) for all k
binomial(n,1) = n
binomial(n,n-1) = n

//out of bounds binomial coefficients
if k<0 || k>n => binomial(n,k) = 0

//all other possible cases, without any multiplication at all
binomial(n,k) = binomial(n-1,k-1) + binomial(n-1,k)
Technically you only need the base case (0,0), the out of bounds case k<0 or k>n, and the recursive addition to really catch them all, but the other couple rules up there are so simple, I don't see why you wouldn't add them in anyway.

A naive implementation of this will suffer from the same issues, a naive implementation of recursive Fibonacci numbers or a naive recursive factorial would suffer from, so if you go this path, I highly recommend dynamically generating a lookup table as you go, to keep down calculation times.
If you are concerned about the memory consumption of such a table (which you really shouldn't be - it shouldn't be a big deal to store numbers of those sizes), you can employ one extra rule to essentially half that memory consumption by using the rule
Code:
If k>n/2 => Binomial(n,k) = Binomial(n,n-k)
All this together should give you a pretty acceptable, reasonably fast implementation of Binomial(n,k) - The largest of Binomial coefficients still grows rather quickly, though. With your standard unsigned (32-bit) int precision, you'd get up to Binomial(18,9) = 48620 with this. Binomial(19,k) will start to see problems once again. However, you'll find yourself pretty rarely in a situation where you actually need to use anything of dimension 19.

The largest Binomial Coefficient grows with roughly \frac{2^{n+\frac{1}{2}}}{\sqrt{\pi n}}, while the general asymptotic growth of any binomial coefficient is about \frac{1}{\sqrt{2 \pi }} \: k^{-k-\frac{1}{2}} \: n^{n+\frac{1}{2}} \: \left(n-k \right)^{k-n-\frac{1}{2}}.

Another thing you could try is to figure out precisely what multiplications you do not actually care about, to also avoid overflow.

12!/(6! (12-6)!) = (12*11*10*9*8*7*6*5*4*3*2)/((6*5*4*3*2)*(6*5*4*3*2)) =
(12*11*10*9*8*7)/(6*5*4*3*2) =
(2*11*2*3*1*7) = 11*7*3*22 = 924

This would require some kind of implementation of rationals where you can reduce them to their simplest form symbolically, before even executing any numeric multiplication. That could be interesting and worthwhile in its own right but it's probably also beyond what you are trying to do here. In the end, it would probably be slower and it'd suffer from the same limitations as the recursive definition above.

All that being said, I'm with Roquen that 12! is more than sufficient for your needs. Just work on other parts. If needed, you can convert to bignum later down the line just fine.

Appendix: Full Form of the Asymptotic Behavior of the Largest Binomial Coefficient, Corrected for Even and Odd Values for n:

\frac{1}{\sqrt{2 \pi }} \: n^{n+\frac{1}{2}} \left(\lceil \frac{n}{2}\rceil +1\right)^{-\lceil \frac{n}{2}\rceil -\frac{1}{2}} \left(\lfloor \frac{n}{2}\rfloor +1\right)^{-\lfloor \frac{n}{2}\rfloor -\frac{1}{2}} \: e^{\frac{1}{360} \left(-\frac{30}{\lceil \frac{n}{2}\rceil +1}+\frac{1}{\left(\lceil\frac{n}{2}\rceil +1\right)^3}+360 \lfloor \frac{n}{2}\rfloor -\frac{30}{\lfloor \frac{n}{2}\rfloor +1}+\frac{1}{\left(\lfloor\frac{n}{2}\rfloor +1\right)^3}-360 n+720\right)+\lceil \frac{n}{2}\rceil }
« Last Edit: September 01, 2014, 04:15:47 PM by kram1032 » Logged
hermann
Iterator
*
Posts: 181



WWW
« Reply #80 on: September 02, 2014, 03:25:28 PM »

Hallo Krams, thanks for the lengthy formula!
I didn't want to go to much in the details.
I was only astonisched how fast one gets to the limits of the computer when callculating n_over_k!

With my Program I can know generate the base vectors here is an example for a space with dimension 4.
The LaTex table is generated by the Program.

I can post higher dimensions if one likes!

<br />\begin{tabular}{|c|c|c|c|c|c|}<br />\hline<br />1 & & & & & \\ \hline<br />e_{1} & e_{2} & e_{3} & e_{4} & & \\ \hline<br />e_{1}\wedge e_{2} & e_{1}\wedge e_{3} & e_{2}\wedge e_{3} & e_{1}\wedge e_{4} & e_{2}\wedge e_{4} & $e_{3}\wedge e_{4} \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3} & e_{1}\wedge e_{2}\wedge e_{4} & e_{1}\wedge e_{3}\wedge e_{4} & e_{2}\wedge e_{3}\wedge e_{4} & & \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} & & & & & \\ \hline<br />\end{tabular}<br />
« Last Edit: September 02, 2014, 03:44:38 PM by hermann » Logged

hermann
Iterator
*
Posts: 181



WWW
« Reply #81 on: September 02, 2014, 03:42:06 PM »

The number of base elements raises rapidly with the dimension a bit higher!
Here is Dimension 6!

Use the bottom scrollbar to see the full table!

<br />\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}<br />\hline<br />1 & & & & & & & & & & & & & & & & & & & \\ \hline<br />e_{1} &e_{2} &e_{3} &e_{4} &e_{5} &e_{6} & & & & & & & & & & & & & & \\ \hline<br />e_{1}\wedge e_{2} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{4} &e_{2}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{5} &e_{2}\wedge e_{5} &e_{3}\wedge e_{5} &e_{4}\wedge e_{5} &e_{1}\wedge e_{6} &e_{2}\wedge e_{6} &e_{3}\wedge e_{6} &e_{4}\wedge e_{6} &e_{5}\wedge e_{6} & & & & & \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{5} &e_{1}\wedge e_{3}\wedge e_{5} &e_{2}\wedge e_{3}\wedge e_{5} &e_{1}\wedge e_{4}\wedge e_{5} &e_{2}\wedge e_{4}\wedge e_{5} &e_{3}\wedge e_{4}\wedge e_{5} &e_{1}\wedge e_{2}\wedge e_{6} &e_{1}\wedge e_{3}\wedge e_{6} &e_{2}\wedge e_{3}\wedge e_{6} &e_{1}\wedge e_{4}\wedge e_{6} &e_{2}\wedge e_{4}\wedge e_{6} &e_{3}\wedge e_{4}\wedge e_{6} &e_{1}\wedge e_{5}\wedge e_{6} &e_{2}\wedge e_{5}\wedge e_{6} &e_{3}\wedge e_{5}\wedge e_{6} &e_{4}\wedge e_{5}\wedge e_{6} \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{5} &e_{1}\wedge e_{2}\wedge e_{4}\wedge e_{5} &e_{1}\wedge e_{3}\wedge e_{4}\wedge e_{5} &e_{2}\wedge e_{3}\wedge e_{4}\wedge e_{5} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{6} &e_{1}\wedge e_{2}\wedge e_{4}\wedge e_{6} &e_{1}\wedge e_{3}\wedge e_{4}\wedge e_{6} &e_{2}\wedge e_{3}\wedge e_{4}\wedge e_{6} &e_{1}\wedge e_{2}\wedge e_{5}\wedge e_{6} &e_{1}\wedge e_{3}\wedge e_{5}\wedge e_{6} &e_{2}\wedge e_{3}\wedge e_{5}\wedge e_{6} &e_{1}\wedge e_{4}\wedge e_{5}\wedge e_{6} &e_{2}\wedge e_{4}\wedge e_{5}\wedge e_{6} &e_{3}\wedge e_{4}\wedge e_{5}\wedge e_{6} & & & & & \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4}\wedge e_{5} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4}\wedge e_{6} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{5}\wedge e_{6} &e_{1}\wedge e_{2}\wedge e_{4}\wedge e_{5}\wedge e_{6} &e_{1}\wedge e_{3}\wedge e_{4}\wedge e_{5}\wedge e_{6} &e_{2}\wedge e_{3}\wedge e_{4}\wedge e_{5}\wedge e_{6} & & & & & & & & & & & & & & \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4}\wedge e_{5}\wedge e_{6} & & & & & & & & & & & & & & & & & & & \\ \hline<br />\end{tabular}<br />
Logged

kram1032
Fractal Senior
******
Posts: 1863


« Reply #82 on: September 02, 2014, 04:08:19 PM »

Well yeah: an algebra of dimension 6 has 26=64 different elements.

I'd suggest naming the sole full-dimensional element I and defining the later half by multiplying I with the lower half.
This gives a fairly intuitive relationship between various elements and their respective orthogonality.

For instance, you will find that, in the case of R3:

I e1 = e1e2e3 e1 = e2e3
I e2 = e1e2e3 e2 = -e1e3 = e3e1
I e3 = e1e2e3 e3 = e1e2

So the "1st bivector" would be e2e3 rather than e1e2, and the bivector "e1e3" would actually appear as negative by default, replacing it by "e3e1" as the positive one. - For a right-handed frame, rather than a left-handed one.

If you use this ordering in, say, multiplication tables, you will find that it is more natural than the ordering you currently use in your tables. There will be more visible, obvious structure.

This will also be useful in defining relationships over dual spaces, like the geometrically very useful meet and join operations.

Edit: Actually, scratch that. This definitely works perfectly fine with 3 base elements. But beyond that, the ordering isn't so obvious. I'm not sure if there is some kind of "ideal" "canonical" ordering in that case.
« Last Edit: September 02, 2014, 11:11:05 PM by kram1032 » Logged
hermann
Iterator
*
Posts: 181



WWW
« Reply #83 on: September 03, 2014, 06:11:41 AM »

Hallo Kram,

thanks for the posting of the link to the paper of Daniel Fontijne on Efficient Implementation of Geometric Algebra.
This paper was a great inspiration for my work!

Fontijne speeks from canonic ordering. I have implemented it a bit different then proposed by Fontijne (it was easier to program).
But it should produce the same result for the canonic ordering and labeling of the indizies. The trick is to implement the Base by binary numbers!
From the binary base it is easy to transform to the name of the element. The grade is the number of 1's in the binary representation.
For the principal have a look at the 6-Dimensional output.

I had some trouble with all the indizies. But now I have the basic data structures and subroutines for the initialisation of all the indizies.
I also have some subroutines for producing LaTex- and HTML-tables for the visualisation.

Implementing the product of geometric algebra shouldn't be much effort now.
Fontijne has given an example, but I have to modify it to match my data stuctures.
I hope I have some time for this issues the next days.

Hermann
P.S The following output shows the unit vectors for 6 Dimensions.

Code:
  0: Value:  1.00000E+00 Grade: 0 Base:  0 0 0 0 0 0 Name: 1
  1: Value:  1.00000E+00 Grade: 1 Base:  1 0 0 0 0 0 Name: e1
  2: Value:  1.00000E+00 Grade: 1 Base:  0 1 0 0 0 0 Name: e2
  3: Value:  1.00000E+00 Grade: 2 Base:  1 1 0 0 0 0 Name: e1^e2
  4: Value:  1.00000E+00 Grade: 1 Base:  0 0 1 0 0 0 Name: e3
  5: Value:  1.00000E+00 Grade: 2 Base:  1 0 1 0 0 0 Name: e1^e3
  6: Value:  1.00000E+00 Grade: 2 Base:  0 1 1 0 0 0 Name: e2^e3
  7: Value:  1.00000E+00 Grade: 3 Base:  1 1 1 0 0 0 Name: e1^e2^e3
  8: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 1 0 0 Name: e4
  9: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 1 0 0 Name: e1^e4
 10: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 1 0 0 Name: e2^e4
 11: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 1 0 0 Name: e1^e2^e4
 12: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 1 0 0 Name: e3^e4
 13: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 1 0 0 Name: e1^e3^e4
 14: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 1 0 0 Name: e2^e3^e4
 15: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 1 0 0 Name: e1^e2^e3^e4
 16: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 0 1 0 Name: e5
 17: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 0 1 0 Name: e1^e5
 18: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 0 1 0 Name: e2^e5
 19: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 0 1 0 Name: e1^e2^e5
 20: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 0 1 0 Name: e3^e5
 21: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 0 1 0 Name: e1^e3^e5
 22: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 0 1 0 Name: e2^e3^e5
 23: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 0 1 0 Name: e1^e2^e3^e5
 24: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 1 1 0 Name: e4^e5
 25: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 1 1 0 Name: e1^e4^e5
 26: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 1 1 0 Name: e2^e4^e5
 27: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 1 1 0 Name: e1^e2^e4^e5
 28: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 1 1 0 Name: e3^e4^e5
 29: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 1 1 0 Name: e1^e3^e4^e5
 30: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 1 1 0 Name: e2^e3^e4^e5
 31: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 1 1 0 Name: e1^e2^e3^e4^e5
 32: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 0 0 1 Name: e6
 33: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 0 0 1 Name: e1^e6
 34: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 0 0 1 Name: e2^e6
 35: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 0 0 1 Name: e1^e2^e6
 36: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 0 0 1 Name: e3^e6
 37: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 0 0 1 Name: e1^e3^e6
 38: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 0 0 1 Name: e2^e3^e6
 39: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 0 0 1 Name: e1^e2^e3^e6
 40: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 1 0 1 Name: e4^e6
 41: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 1 0 1 Name: e1^e4^e6
 42: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 1 0 1 Name: e2^e4^e6
 43: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 1 0 1 Name: e1^e2^e4^e6
 44: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 1 0 1 Name: e3^e4^e6
 45: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 1 0 1 Name: e1^e3^e4^e6
 46: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 1 0 1 Name: e2^e3^e4^e6
 47: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 1 0 1 Name: e1^e2^e3^e4^e6
 48: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 1 1 Name: e5^e6
 49: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 1 1 Name: e1^e5^e6
 50: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 1 1 Name: e2^e5^e6
 51: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 1 1 Name: e1^e2^e5^e6
 52: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 1 1 Name: e3^e5^e6
 53: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 1 1 Name: e1^e3^e5^e6
 54: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 1 1 Name: e2^e3^e5^e6
 55: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 1 1 Name: e1^e2^e3^e5^e6
 56: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 1 1 Name: e4^e5^e6
 57: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 1 1 Name: e1^e4^e5^e6
 58: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 1 1 Name: e2^e4^e5^e6
 59: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 1 1 Name: e1^e2^e4^e5^e6
 60: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 1 1 Name: e3^e4^e5^e6
 61: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 1 1 Name: e1^e3^e4^e5^e6
 62: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 1 1 Name: e2^e3^e4^e5^e6
 63: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 1 1 Name: e1^e2^e3^e4^e5^e6

Ps. I had problems in placing the LaTex Table for Dimension 8. may be to many elements!
« Last Edit: September 03, 2014, 08:28:21 AM by hermann » Logged

hermann
Iterator
*
Posts: 181



WWW
« Reply #84 on: September 03, 2014, 06:41:08 AM »

I think the principle  is easy to understand in three Dimensions:

Quote
  0: Value:  1.00000E+00 Grade: 0 Base:  0 0 0 Name: 1
  1: Value:  1.00000E+00 Grade: 1 Base:  1 0 0 Name: e1
  2: Value:  1.00000E+00 Grade: 1 Base:  0 1 0 Name: e2
  3: Value:  1.00000E+00 Grade: 2 Base:  1 1 0 Name: e1^e2
  4: Value:  1.00000E+00 Grade: 1 Base:  0 0 1 Name: e3
  5: Value:  1.00000E+00 Grade: 2 Base:  1 0 1 Name: e1^e3
  6: Value:  1.00000E+00 Grade: 2 Base:  0 1 1 Name: e2^e3
  7: Value:  1.00000E+00 Grade: 3 Base:  1 1 1 Name: e1^e2^e3

Understood ? Here we have 8 Dimensions:

Code:
  0: Value:  1.00000E+00 Grade: 0 Base:  0 0 0 0 0 0 0 0 Name: 1
  1: Value:  1.00000E+00 Grade: 1 Base:  1 0 0 0 0 0 0 0 Name: e1
  2: Value:  1.00000E+00 Grade: 1 Base:  0 1 0 0 0 0 0 0 Name: e2
  3: Value:  1.00000E+00 Grade: 2 Base:  1 1 0 0 0 0 0 0 Name: e1^e2
  4: Value:  1.00000E+00 Grade: 1 Base:  0 0 1 0 0 0 0 0 Name: e3
  5: Value:  1.00000E+00 Grade: 2 Base:  1 0 1 0 0 0 0 0 Name: e1^e3
  6: Value:  1.00000E+00 Grade: 2 Base:  0 1 1 0 0 0 0 0 Name: e2^e3
  7: Value:  1.00000E+00 Grade: 3 Base:  1 1 1 0 0 0 0 0 Name: e1^e2^e3
  8: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 1 0 0 0 0 Name: e4
  9: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 1 0 0 0 0 Name: e1^e4
 10: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 1 0 0 0 0 Name: e2^e4
 11: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 1 0 0 0 0 Name: e1^e2^e4
 12: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 1 0 0 0 0 Name: e3^e4
 13: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 1 0 0 0 0 Name: e1^e3^e4
 14: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 1 0 0 0 0 Name: e2^e3^e4
 15: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 1 0 0 0 0 Name: e1^e2^e3^e4
 16: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 0 1 0 0 0 Name: e5
 17: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 0 1 0 0 0 Name: e1^e5
 18: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 0 1 0 0 0 Name: e2^e5
 19: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 0 1 0 0 0 Name: e1^e2^e5
 20: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 0 1 0 0 0 Name: e3^e5
 21: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 0 1 0 0 0 Name: e1^e3^e5
 22: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 0 1 0 0 0 Name: e2^e3^e5
 23: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 0 1 0 0 0 Name: e1^e2^e3^e5
 24: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 1 1 0 0 0 Name: e4^e5
 25: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 1 1 0 0 0 Name: e1^e4^e5
 26: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 1 1 0 0 0 Name: e2^e4^e5
 27: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 1 1 0 0 0 Name: e1^e2^e4^e5
 28: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 1 1 0 0 0 Name: e3^e4^e5
 29: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 1 1 0 0 0 Name: e1^e3^e4^e5
 30: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 1 1 0 0 0 Name: e2^e3^e4^e5
 31: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 1 1 0 0 0 Name: e1^e2^e3^e4^e5
 32: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 0 0 1 0 0 Name: e6
 33: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 0 0 1 0 0 Name: e1^e6
 34: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 0 0 1 0 0 Name: e2^e6
 35: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 0 0 1 0 0 Name: e1^e2^e6
 36: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 0 0 1 0 0 Name: e3^e6
 37: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 0 0 1 0 0 Name: e1^e3^e6
 38: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 0 0 1 0 0 Name: e2^e3^e6
 39: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 0 0 1 0 0 Name: e1^e2^e3^e6
 40: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 1 0 1 0 0 Name: e4^e6
 41: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 1 0 1 0 0 Name: e1^e4^e6
 42: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 1 0 1 0 0 Name: e2^e4^e6
 43: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 1 0 1 0 0 Name: e1^e2^e4^e6
 44: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 1 0 1 0 0 Name: e3^e4^e6
 45: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 1 0 1 0 0 Name: e1^e3^e4^e6
 46: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 1 0 1 0 0 Name: e2^e3^e4^e6
 47: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 1 0 1 0 0 Name: e1^e2^e3^e4^e6
 48: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 1 1 0 0 Name: e5^e6
 49: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 1 1 0 0 Name: e1^e5^e6
 50: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 1 1 0 0 Name: e2^e5^e6
 51: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 1 1 0 0 Name: e1^e2^e5^e6
 52: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 1 1 0 0 Name: e3^e5^e6
 53: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 1 1 0 0 Name: e1^e3^e5^e6
 54: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 1 1 0 0 Name: e2^e3^e5^e6
 55: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 1 1 0 0 Name: e1^e2^e3^e5^e6
 56: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 1 1 0 0 Name: e4^e5^e6
 57: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 1 1 0 0 Name: e1^e4^e5^e6
 58: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 1 1 0 0 Name: e2^e4^e5^e6
 59: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 1 1 0 0 Name: e1^e2^e4^e5^e6
 60: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 1 1 0 0 Name: e3^e4^e5^e6
 61: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 1 1 0 0 Name: e1^e3^e4^e5^e6
 62: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 1 1 0 0 Name: e2^e3^e4^e5^e6
 63: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 1 1 0 0 Name: e1^e2^e3^e4^e5^e6
 64: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 0 0 0 1 0 Name: e7
 65: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 0 0 0 1 0 Name: e1^e7
 66: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 0 0 0 1 0 Name: e2^e7
 67: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 0 0 0 1 0 Name: e1^e2^e7
 68: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 0 0 0 1 0 Name: e3^e7
 69: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 0 0 0 1 0 Name: e1^e3^e7
 70: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 0 0 0 1 0 Name: e2^e3^e7
 71: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 0 0 0 1 0 Name: e1^e2^e3^e7
 72: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 1 0 0 1 0 Name: e4^e7
 73: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 1 0 0 1 0 Name: e1^e4^e7
 74: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 1 0 0 1 0 Name: e2^e4^e7
 75: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 1 0 0 1 0 Name: e1^e2^e4^e7
 76: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 1 0 0 1 0 Name: e3^e4^e7
 77: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 1 0 0 1 0 Name: e1^e3^e4^e7
 78: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 1 0 0 1 0 Name: e2^e3^e4^e7
 79: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 1 0 0 1 0 Name: e1^e2^e3^e4^e7
 80: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 1 0 1 0 Name: e5^e7
 81: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 1 0 1 0 Name: e1^e5^e7
 82: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 1 0 1 0 Name: e2^e5^e7
 83: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 1 0 1 0 Name: e1^e2^e5^e7
 84: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 1 0 1 0 Name: e3^e5^e7
 85: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 1 0 1 0 Name: e1^e3^e5^e7
 86: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 1 0 1 0 Name: e2^e3^e5^e7
 87: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 1 0 1 0 Name: e1^e2^e3^e5^e7
 88: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 1 0 1 0 Name: e4^e5^e7
 89: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 1 0 1 0 Name: e1^e4^e5^e7
 90: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 1 0 1 0 Name: e2^e4^e5^e7
 91: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 1 0 1 0 Name: e1^e2^e4^e5^e7
 92: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 1 0 1 0 Name: e3^e4^e5^e7
 93: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 1 0 1 0 Name: e1^e3^e4^e5^e7
 94: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 1 0 1 0 Name: e2^e3^e4^e5^e7
 95: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 1 0 1 0 Name: e1^e2^e3^e4^e5^e7
 96: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 0 1 1 0 Name: e6^e7
 97: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 0 1 1 0 Name: e1^e6^e7
 98: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 0 1 1 0 Name: e2^e6^e7
 99: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 0 1 1 0 Name: e1^e2^e6^e7
 100: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 0 1 1 0 Name: e3^e6^e7
 101: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 0 1 1 0 Name: e1^e3^e6^e7
 102: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 0 1 1 0 Name: e2^e3^e6^e7
 103: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 0 1 1 0 Name: e1^e2^e3^e6^e7
 104: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 0 1 1 0 Name: e4^e6^e7
 105: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 0 1 1 0 Name: e1^e4^e6^e7
 106: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 0 1 1 0 Name: e2^e4^e6^e7
 107: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 0 1 1 0 Name: e1^e2^e4^e6^e7
 108: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 0 1 1 0 Name: e3^e4^e6^e7
 109: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 0 1 1 0 Name: e1^e3^e4^e6^e7
 110: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 0 1 1 0 Name: e2^e3^e4^e6^e7
 111: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 0 1 1 0 Name: e1^e2^e3^e4^e6^e7
 112: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 0 1 1 1 0 Name: e5^e6^e7
 113: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 0 1 1 1 0 Name: e1^e5^e6^e7
 114: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 0 1 1 1 0 Name: e2^e5^e6^e7
 115: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 0 1 1 1 0 Name: e1^e2^e5^e6^e7
 116: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 0 1 1 1 0 Name: e3^e5^e6^e7
 117: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 0 1 1 1 0 Name: e1^e3^e5^e6^e7
 118: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 0 1 1 1 0 Name: e2^e3^e5^e6^e7
 119: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 0 1 1 1 0 Name: e1^e2^e3^e5^e6^e7
 120: Value:  1.00000E+00 Grade: 4 Base:  0 0 0 1 1 1 1 0 Name: e4^e5^e6^e7
 121: Value:  1.00000E+00 Grade: 5 Base:  1 0 0 1 1 1 1 0 Name: e1^e4^e5^e6^e7
 122: Value:  1.00000E+00 Grade: 5 Base:  0 1 0 1 1 1 1 0 Name: e2^e4^e5^e6^e7
 123: Value:  1.00000E+00 Grade: 6 Base:  1 1 0 1 1 1 1 0 Name: e1^e2^e4^e5^e6^e7
 124: Value:  1.00000E+00 Grade: 5 Base:  0 0 1 1 1 1 1 0 Name: e3^e4^e5^e6^e7
 125: Value:  1.00000E+00 Grade: 6 Base:  1 0 1 1 1 1 1 0 Name: e1^e3^e4^e5^e6^e7
 126: Value:  1.00000E+00 Grade: 6 Base:  0 1 1 1 1 1 1 0 Name: e2^e3^e4^e5^e6^e7
 127: Value:  1.00000E+00 Grade: 7 Base:  1 1 1 1 1 1 1 0 Name: e1^e2^e3^e4^e5^e6^e7
 128: Value:  1.00000E+00 Grade: 1 Base:  0 0 0 0 0 0 0 1 Name: e8
 129: Value:  1.00000E+00 Grade: 2 Base:  1 0 0 0 0 0 0 1 Name: e1^e8
 130: Value:  1.00000E+00 Grade: 2 Base:  0 1 0 0 0 0 0 1 Name: e2^e8
 131: Value:  1.00000E+00 Grade: 3 Base:  1 1 0 0 0 0 0 1 Name: e1^e2^e8
 132: Value:  1.00000E+00 Grade: 2 Base:  0 0 1 0 0 0 0 1 Name: e3^e8
 133: Value:  1.00000E+00 Grade: 3 Base:  1 0 1 0 0 0 0 1 Name: e1^e3^e8
 134: Value:  1.00000E+00 Grade: 3 Base:  0 1 1 0 0 0 0 1 Name: e2^e3^e8
 135: Value:  1.00000E+00 Grade: 4 Base:  1 1 1 0 0 0 0 1 Name: e1^e2^e3^e8
 136: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 1 0 0 0 1 Name: e4^e8
 137: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 1 0 0 0 1 Name: e1^e4^e8
 138: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 1 0 0 0 1 Name: e2^e4^e8
 139: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 1 0 0 0 1 Name: e1^e2^e4^e8
 140: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 1 0 0 0 1 Name: e3^e4^e8
 141: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 1 0 0 0 1 Name: e1^e3^e4^e8
 142: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 1 0 0 0 1 Name: e2^e3^e4^e8
 143: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 1 0 0 0 1 Name: e1^e2^e3^e4^e8
 144: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 1 0 0 1 Name: e5^e8
 145: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 1 0 0 1 Name: e1^e5^e8
 146: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 1 0 0 1 Name: e2^e5^e8
 147: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 1 0 0 1 Name: e1^e2^e5^e8
 148: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 1 0 0 1 Name: e3^e5^e8
 149: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 1 0 0 1 Name: e1^e3^e5^e8
 150: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 1 0 0 1 Name: e2^e3^e5^e8
 151: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 1 0 0 1 Name: e1^e2^e3^e5^e8
 152: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 1 0 0 1 Name: e4^e5^e8
 153: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 1 0 0 1 Name: e1^e4^e5^e8
 154: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 1 0 0 1 Name: e2^e4^e5^e8
 155: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 1 0 0 1 Name: e1^e2^e4^e5^e8
 156: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 1 0 0 1 Name: e3^e4^e5^e8
 157: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 1 0 0 1 Name: e1^e3^e4^e5^e8
 158: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 1 0 0 1 Name: e2^e3^e4^e5^e8
 159: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 1 0 0 1 Name: e1^e2^e3^e4^e5^e8
 160: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 0 1 0 1 Name: e6^e8
 161: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 0 1 0 1 Name: e1^e6^e8
 162: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 0 1 0 1 Name: e2^e6^e8
 163: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 0 1 0 1 Name: e1^e2^e6^e8
 164: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 0 1 0 1 Name: e3^e6^e8
 165: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 0 1 0 1 Name: e1^e3^e6^e8
 166: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 0 1 0 1 Name: e2^e3^e6^e8
 167: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 0 1 0 1 Name: e1^e2^e3^e6^e8
 168: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 0 1 0 1 Name: e4^e6^e8
 169: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 0 1 0 1 Name: e1^e4^e6^e8
 170: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 0 1 0 1 Name: e2^e4^e6^e8
 171: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 0 1 0 1 Name: e1^e2^e4^e6^e8
 172: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 0 1 0 1 Name: e3^e4^e6^e8
 173: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 0 1 0 1 Name: e1^e3^e4^e6^e8
 174: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 0 1 0 1 Name: e2^e3^e4^e6^e8
 175: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 0 1 0 1 Name: e1^e2^e3^e4^e6^e8
 176: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 0 1 1 0 1 Name: e5^e6^e8
 177: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 0 1 1 0 1 Name: e1^e5^e6^e8
 178: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 0 1 1 0 1 Name: e2^e5^e6^e8
 179: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 0 1 1 0 1 Name: e1^e2^e5^e6^e8
 180: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 0 1 1 0 1 Name: e3^e5^e6^e8
 181: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 0 1 1 0 1 Name: e1^e3^e5^e6^e8
 182: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 0 1 1 0 1 Name: e2^e3^e5^e6^e8
 183: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 0 1 1 0 1 Name: e1^e2^e3^e5^e6^e8
 184: Value:  1.00000E+00 Grade: 4 Base:  0 0 0 1 1 1 0 1 Name: e4^e5^e6^e8
 185: Value:  1.00000E+00 Grade: 5 Base:  1 0 0 1 1 1 0 1 Name: e1^e4^e5^e6^e8
 186: Value:  1.00000E+00 Grade: 5 Base:  0 1 0 1 1 1 0 1 Name: e2^e4^e5^e6^e8
 187: Value:  1.00000E+00 Grade: 6 Base:  1 1 0 1 1 1 0 1 Name: e1^e2^e4^e5^e6^e8
 188: Value:  1.00000E+00 Grade: 5 Base:  0 0 1 1 1 1 0 1 Name: e3^e4^e5^e6^e8
 189: Value:  1.00000E+00 Grade: 6 Base:  1 0 1 1 1 1 0 1 Name: e1^e3^e4^e5^e6^e8
 190: Value:  1.00000E+00 Grade: 6 Base:  0 1 1 1 1 1 0 1 Name: e2^e3^e4^e5^e6^e8
 191: Value:  1.00000E+00 Grade: 7 Base:  1 1 1 1 1 1 0 1 Name: e1^e2^e3^e4^e5^e6^e8
 192: Value:  1.00000E+00 Grade: 2 Base:  0 0 0 0 0 0 1 1 Name: e7^e8
 193: Value:  1.00000E+00 Grade: 3 Base:  1 0 0 0 0 0 1 1 Name: e1^e7^e8
 194: Value:  1.00000E+00 Grade: 3 Base:  0 1 0 0 0 0 1 1 Name: e2^e7^e8
 195: Value:  1.00000E+00 Grade: 4 Base:  1 1 0 0 0 0 1 1 Name: e1^e2^e7^e8
 196: Value:  1.00000E+00 Grade: 3 Base:  0 0 1 0 0 0 1 1 Name: e3^e7^e8
 197: Value:  1.00000E+00 Grade: 4 Base:  1 0 1 0 0 0 1 1 Name: e1^e3^e7^e8
 198: Value:  1.00000E+00 Grade: 4 Base:  0 1 1 0 0 0 1 1 Name: e2^e3^e7^e8
 199: Value:  1.00000E+00 Grade: 5 Base:  1 1 1 0 0 0 1 1 Name: e1^e2^e3^e7^e8
 200: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 1 0 0 1 1 Name: e4^e7^e8
 201: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 1 0 0 1 1 Name: e1^e4^e7^e8
 202: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 1 0 0 1 1 Name: e2^e4^e7^e8
 203: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 1 0 0 1 1 Name: e1^e2^e4^e7^e8
 204: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 1 0 0 1 1 Name: e3^e4^e7^e8
 205: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 1 0 0 1 1 Name: e1^e3^e4^e7^e8
 206: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 1 0 0 1 1 Name: e2^e3^e4^e7^e8
 207: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 1 0 0 1 1 Name: e1^e2^e3^e4^e7^e8
 208: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 0 1 0 1 1 Name: e5^e7^e8
 209: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 0 1 0 1 1 Name: e1^e5^e7^e8
 210: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 0 1 0 1 1 Name: e2^e5^e7^e8
 211: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 0 1 0 1 1 Name: e1^e2^e5^e7^e8
 212: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 0 1 0 1 1 Name: e3^e5^e7^e8
 213: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 0 1 0 1 1 Name: e1^e3^e5^e7^e8
 214: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 0 1 0 1 1 Name: e2^e3^e5^e7^e8
 215: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 0 1 0 1 1 Name: e1^e2^e3^e5^e7^e8
 216: Value:  1.00000E+00 Grade: 4 Base:  0 0 0 1 1 0 1 1 Name: e4^e5^e7^e8
 217: Value:  1.00000E+00 Grade: 5 Base:  1 0 0 1 1 0 1 1 Name: e1^e4^e5^e7^e8
 218: Value:  1.00000E+00 Grade: 5 Base:  0 1 0 1 1 0 1 1 Name: e2^e4^e5^e7^e8
 219: Value:  1.00000E+00 Grade: 6 Base:  1 1 0 1 1 0 1 1 Name: e1^e2^e4^e5^e7^e8
 220: Value:  1.00000E+00 Grade: 5 Base:  0 0 1 1 1 0 1 1 Name: e3^e4^e5^e7^e8
 221: Value:  1.00000E+00 Grade: 6 Base:  1 0 1 1 1 0 1 1 Name: e1^e3^e4^e5^e7^e8
 222: Value:  1.00000E+00 Grade: 6 Base:  0 1 1 1 1 0 1 1 Name: e2^e3^e4^e5^e7^e8
 223: Value:  1.00000E+00 Grade: 7 Base:  1 1 1 1 1 0 1 1 Name: e1^e2^e3^e4^e5^e7^e8
 224: Value:  1.00000E+00 Grade: 3 Base:  0 0 0 0 0 1 1 1 Name: e6^e7^e8
 225: Value:  1.00000E+00 Grade: 4 Base:  1 0 0 0 0 1 1 1 Name: e1^e6^e7^e8
 226: Value:  1.00000E+00 Grade: 4 Base:  0 1 0 0 0 1 1 1 Name: e2^e6^e7^e8
 227: Value:  1.00000E+00 Grade: 5 Base:  1 1 0 0 0 1 1 1 Name: e1^e2^e6^e7^e8
 228: Value:  1.00000E+00 Grade: 4 Base:  0 0 1 0 0 1 1 1 Name: e3^e6^e7^e8
 229: Value:  1.00000E+00 Grade: 5 Base:  1 0 1 0 0 1 1 1 Name: e1^e3^e6^e7^e8
 230: Value:  1.00000E+00 Grade: 5 Base:  0 1 1 0 0 1 1 1 Name: e2^e3^e6^e7^e8
 231: Value:  1.00000E+00 Grade: 6 Base:  1 1 1 0 0 1 1 1 Name: e1^e2^e3^e6^e7^e8
 232: Value:  1.00000E+00 Grade: 4 Base:  0 0 0 1 0 1 1 1 Name: e4^e6^e7^e8
 233: Value:  1.00000E+00 Grade: 5 Base:  1 0 0 1 0 1 1 1 Name: e1^e4^e6^e7^e8
 234: Value:  1.00000E+00 Grade: 5 Base:  0 1 0 1 0 1 1 1 Name: e2^e4^e6^e7^e8
 235: Value:  1.00000E+00 Grade: 6 Base:  1 1 0 1 0 1 1 1 Name: e1^e2^e4^e6^e7^e8
 236: Value:  1.00000E+00 Grade: 5 Base:  0 0 1 1 0 1 1 1 Name: e3^e4^e6^e7^e8
 237: Value:  1.00000E+00 Grade: 6 Base:  1 0 1 1 0 1 1 1 Name: e1^e3^e4^e6^e7^e8
 238: Value:  1.00000E+00 Grade: 6 Base:  0 1 1 1 0 1 1 1 Name: e2^e3^e4^e6^e7^e8
 239: Value:  1.00000E+00 Grade: 7 Base:  1 1 1 1 0 1 1 1 Name: e1^e2^e3^e4^e6^e7^e8
 240: Value:  1.00000E+00 Grade: 4 Base:  0 0 0 0 1 1 1 1 Name: e5^e6^e7^e8
 241: Value:  1.00000E+00 Grade: 5 Base:  1 0 0 0 1 1 1 1 Name: e1^e5^e6^e7^e8
 242: Value:  1.00000E+00 Grade: 5 Base:  0 1 0 0 1 1 1 1 Name: e2^e5^e6^e7^e8
 243: Value:  1.00000E+00 Grade: 6 Base:  1 1 0 0 1 1 1 1 Name: e1^e2^e5^e6^e7^e8
 244: Value:  1.00000E+00 Grade: 5 Base:  0 0 1 0 1 1 1 1 Name: e3^e5^e6^e7^e8
 245: Value:  1.00000E+00 Grade: 6 Base:  1 0 1 0 1 1 1 1 Name: e1^e3^e5^e6^e7^e8
 246: Value:  1.00000E+00 Grade: 6 Base:  0 1 1 0 1 1 1 1 Name: e2^e3^e5^e6^e7^e8
 247: Value:  1.00000E+00 Grade: 7 Base:  1 1 1 0 1 1 1 1 Name: e1^e2^e3^e5^e6^e7^e8
 248: Value:  1.00000E+00 Grade: 5 Base:  0 0 0 1 1 1 1 1 Name: e4^e5^e6^e7^e8
 249: Value:  1.00000E+00 Grade: 6 Base:  1 0 0 1 1 1 1 1 Name: e1^e4^e5^e6^e7^e8
 250: Value:  1.00000E+00 Grade: 6 Base:  0 1 0 1 1 1 1 1 Name: e2^e4^e5^e6^e7^e8
 251: Value:  1.00000E+00 Grade: 7 Base:  1 1 0 1 1 1 1 1 Name: e1^e2^e4^e5^e6^e7^e8
 252: Value:  1.00000E+00 Grade: 6 Base:  0 0 1 1 1 1 1 1 Name: e3^e4^e5^e6^e7^e8
 253: Value:  1.00000E+00 Grade: 7 Base:  1 0 1 1 1 1 1 1 Name: e1^e3^e4^e5^e6^e7^e8
 254: Value:  1.00000E+00 Grade: 7 Base:  0 1 1 1 1 1 1 1 Name: e2^e3^e4^e5^e6^e7^e8
 255: Value:  1.00000E+00 Grade: 8 Base:  1 1 1 1 1 1 1 1 Name: e1^e2^e3^e4^e5^e6^e7^e8
« Last Edit: September 03, 2014, 06:47:54 AM by hermann » Logged

hermann
Iterator
*
Posts: 181



WWW
« Reply #85 on: September 06, 2014, 08:58:31 AM »

Here are some multiplications tables for products of multivectors:

2-Dimensions:
<br />\begin{tabular}{|c|c|c|c|c|c|}<br />\hline<br />&1 &e_{1} &e_{2} &e_{1}\wedge e_{2} \\ \hline<br />1 &1 &e_{1} &e_{2} &e_{1}\wedge e_{2} \\ \hline<br />e_{1} &e_{1} &1 &e_{1}\wedge e_{2} &e_{2} \\ \hline<br />e_{2} &e_{2} &-e_{1}\wedge e_{2} &1 &-e_{1} \\ \hline<br />e_{1}\wedge e_{2} &e_{1}\wedge e_{2} &-e_{2} &e_{1} &-1 \\ \hline<br />\end{tabular}<br />

3-Dimensions
<br />\begin{tabular}{|c|c|c|c|c|c|c|c|c|}<br />\hline<br />&1 &e_{1} &e_{2} &e_{1}\wedge e_{2} &e_{3} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} \\ \hline<br />1 &1 &e_{1} &e_{2} &e_{1}\wedge e_{2} &e_{3} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} \\ \hline<br />e_{1} &e_{1} &1 &e_{1}\wedge e_{2} &e_{2} &e_{1}\wedge e_{3} &e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} \\ \hline<br />e_{2} &e_{2} &-e_{1}\wedge e_{2} &1 &-e_{1} &e_{2}\wedge e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} &e_{3} &-e_{1}\wedge e_{3} \\ \hline<br />e_{1}\wedge e_{2} &e_{1}\wedge e_{2} &-e_{2} &e_{1} &-1 &e_{1}\wedge e_{2}\wedge e_{3} &-e_{2}\wedge e_{3} &e_{1}\wedge e_{3} &-e_{3} \\ \hline<br />e_{3} &e_{3} &-e_{1}\wedge e_{3} &-e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &1 &-e_{1} &-e_{2} &e_{1}\wedge e_{2} \\ \hline<br />e_{1}\wedge e_{3} &e_{1}\wedge e_{3} &-e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1} &-1 &-e_{1}\wedge e_{2} &e_{2} \\ \hline<br />e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &-e_{3} &-e_{1}\wedge e_{3} &e_{2} &e_{1}\wedge e_{2} &-1 &-e_{1} \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &-e_{1}\wedge e_{3} &-e_{3} &e_{1}\wedge e_{2} &e_{2} &-e_{1} &-1 \\ \hline<br />\end{tabular}<br />
« Last Edit: September 06, 2014, 09:09:37 AM by hermann » Logged

hermann
Iterator
*
Posts: 181



WWW
« Reply #86 on: September 06, 2014, 09:11:37 AM »

4-Dimensions:

<br />\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}<br />\hline<br />&1 &e_{1} &e_{2} &e_{1}\wedge e_{2} &e_{3} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{4} &e_{1}\wedge e_{4} &e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} \\ \hline<br />1 &1 &e_{1} &e_{2} &e_{1}\wedge e_{2} &e_{3} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{4} &e_{1}\wedge e_{4} &e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} \\ \hline<br />e_{1} &e_{1} &1 &e_{1}\wedge e_{2} &e_{2} &e_{1}\wedge e_{3} &e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{4} &e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &e_{2}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} \\ \hline<br />e_{2} &e_{2} &-e_{1}\wedge e_{2} &1 &-e_{1} &e_{2}\wedge e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} &e_{3} &-e_{1}\wedge e_{3} &e_{2}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{4} &e_{4} &-e_{1}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &-e_{1}\wedge e_{3}\wedge e_{4} \\ \hline<br />e_{1}\wedge e_{2} &e_{1}\wedge e_{2} &-e_{2} &e_{1} &-1 &e_{1}\wedge e_{2}\wedge e_{3} &-e_{2}\wedge e_{3} &e_{1}\wedge e_{3} &-e_{3} &e_{1}\wedge e_{2}\wedge e_{4} &-e_{2}\wedge e_{4} &e_{1}\wedge e_{4} &-e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &-e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &-e_{3}\wedge e_{4} \\ \hline<br />e_{3} &e_{3} &-e_{1}\wedge e_{3} &-e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &1 &-e_{1} &-e_{2} &e_{1}\wedge e_{2} &e_{3}\wedge e_{4} &-e_{1}\wedge e_{3}\wedge e_{4} &-e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{4} &-e_{1}\wedge e_{4} &-e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} \\ \hline<br />e_{1}\wedge e_{3} &e_{1}\wedge e_{3} &-e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1} &-1 &-e_{1}\wedge e_{2} &e_{2} &e_{1}\wedge e_{3}\wedge e_{4} &-e_{3}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{2}\wedge e_{4} &e_{2}\wedge e_{4} \\ \hline<br />e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &-e_{3} &-e_{1}\wedge e_{3} &e_{2} &e_{1}\wedge e_{2} &-1 &-e_{1} &e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &-e_{3}\wedge e_{4} &-e_{1}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{4} \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &-e_{1}\wedge e_{3} &-e_{3} &e_{1}\wedge e_{2} &e_{2} &-e_{1} &-1 &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &-e_{1}\wedge e_{3}\wedge e_{4} &-e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &e_{2}\wedge e_{4} &-e_{1}\wedge e_{4} &-e_{4} \\ \hline<br />e_{4} &e_{4} &-e_{1}\wedge e_{4} &-e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &-e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &1 &-e_{1} &-e_{2} &e_{1}\wedge e_{2} &-e_{3} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} \\ \hline<br />e_{1}\wedge e_{4} &e_{1}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{2}\wedge e_{4} &e_{2}\wedge e_{4} &-e_{1}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &-e_{2}\wedge e_{3}\wedge e_{4} &e_{1} &-1 &-e_{1}\wedge e_{2} &e_{2} &-e_{1}\wedge e_{3} &e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &-e_{2}\wedge e_{3} \\ \hline<br />e_{2}\wedge e_{4} &e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{4} &-e_{2}\wedge e_{3}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{2} &e_{1}\wedge e_{2} &-1 &-e_{1} &-e_{2}\wedge e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} &e_{3} &e_{1}\wedge e_{3} \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &e_{2}\wedge e_{4} &-e_{1}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &-e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{2} &e_{2} &-e_{1} &-1 &-e_{1}\wedge e_{2}\wedge e_{3} &-e_{2}\wedge e_{3} &e_{1}\wedge e_{3} &e_{3} \\ \hline<br />e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{4} &-e_{2}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{4} &e_{3} &e_{1}\wedge e_{3} &e_{2}\wedge e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &-1 &-e_{1} &-e_{2} &-e_{1}\wedge e_{2} \\ \hline<br />e_{1}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &-e_{1}\wedge e_{4} &-e_{4} &-e_{1}\wedge e_{2}\wedge e_{4} &-e_{2}\wedge e_{4} &e_{1}\wedge e_{3} &e_{3} &e_{1}\wedge e_{2}\wedge e_{3} &e_{2}\wedge e_{3} &-e_{1} &-1 &-e_{1}\wedge e_{2} &-e_{2} \\ \hline<br />e_{2}\wedge e_{3}\wedge e_{4} &e_{2}\wedge e_{3}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{3}\wedge e_{4} &-e_{1}\wedge e_{3}\wedge e_{4} &-e_{2}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{4} &-e_{4} &e_{1}\wedge e_{4} &e_{2}\wedge e_{3} &-e_{1}\wedge e_{2}\wedge e_{3} &e_{3} &-e_{1}\wedge e_{3} &-e_{2} &e_{1}\wedge e_{2} &-1 &e_{1} \\ \hline<br />e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{2}\wedge e_{3}\wedge e_{4} &-e_{2}\wedge e_{3}\wedge e_{4} &e_{1}\wedge e_{3}\wedge e_{4} &-e_{3}\wedge e_{4} &-e_{1}\wedge e_{2}\wedge e_{4} &e_{2}\wedge e_{4} &-e_{1}\wedge e_{4} &e_{4} &e_{1}\wedge e_{2}\wedge e_{3} &-e_{2}\wedge e_{3} &e_{1}\wedge e_{3} &-e_{3} &-e_{1}\wedge e_{2} &e_{2} &-e_{1} &1 \\ \hline<br />\end{tabular}<br />
Logged

kram1032
Fractal Senior
******
Posts: 1863


« Reply #87 on: September 06, 2014, 10:55:30 AM »

since the first row and line are trivially the same as the second row and line, I like to leave them out in multiplication tables.
These are some interesting patterns, there. I'd love to see them colorcoded or something. It's hard for the eye to tell anything interesting.
Due to the binary formulation, this is sort of "counting with subspaces" cheesy
Logged
hermann
Iterator
*
Posts: 181



WWW
« Reply #88 on: September 06, 2014, 02:30:44 PM »

 I original had the first row and the first coloumn of the table in a different color.
But the LaTex here doesen't accept the following statements:
\rowcolor{cyan}
\cellcolor{cyan}

may be the
\usepackage{colortbl}
can be inserted in the LaTex installation here in fractal forums.

Hermann
Logged

kram1032
Fractal Senior
******
Posts: 1863


« Reply #89 on: September 06, 2014, 03:07:58 PM »

but you don't even need those at all, since they are exact copies of the second column/line (since any thing * 1 = thing)
They just clutter the tables a bit and make them larger than necessary.
Logged
Pages: 1 ... 4 5 [6] 7 8 ... 15   Go Down
  Print  
 
Jump to:  

Related Topics
Subject Started by Replies Views Last post
geometric spirals Mandelbulb3D Gallery bib 0 894 Last post October 25, 2010, 09:48:32 PM
by bib
Geometric Buddha Images Showcase (Rate My Fractal) John Smith 0 1047 Last post June 07, 2012, 09:05:17 PM
by John Smith
Retro Geometric Still Frame FracZky 0 1203 Last post May 02, 2013, 07:30:42 PM
by FracZky
Geometric Patterns No. 2 Saturn&Titan Gallery element90 2 913 Last post February 09, 2014, 03:43:35 PM
by Dinkydau
Geometric Fractals Help Help & Support lancelot 13 941 Last post December 15, 2014, 06:10:29 PM
by Sockratease

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines

Valid XHTML 1.0! Valid CSS! Dilber MC Theme by HarzeM
Page created in 0.716 seconds with 24 queries. (Pretty URLs adds 0.054s, 2q)