Title: The power of fold Post by: knighty on September 07, 2011, 09:30:45 PM Well... this is not a new theory but rather a trick to render spherical, euclidean and hyperbolic tesselations using folding operation. While I was playing with "kleinian drops" boxplorer shader I was surprised to see some hyperbolic tesselations like patterns. After some investigations I wrote this little scripts for evaldraw (link) (http://implicit.googlecode.com/files/triangle-groups.kc) and fragmentarium (link) (http://implicit.googlecode.com/files/poincare-disc30-circle_limit_6.zip).
For now, I'm wondering if it is possible to get the so called "wallpaper groups" using this technique. Title: Re: The power of fold Post by: subblue on September 07, 2011, 11:21:13 PM Nicely done. Funny that - I've also recently been playing around with hyperbolic mappings after seeing Jos Leys Ringworld article :)
Title: Re: The power of fold Post by: s31415 on September 08, 2011, 01:36:20 AM Hi,
I did implement the wallpaper groups in UltraFractal in a related way. The algorithm takes a shape, for instance a continuous circular gradient centered at the origin, and creates rotated and shifted copies so that the whole pattern admits any given wallpaper group as a symmetry group. Check the following UF parameter file. Best wishes, Sam Fractal1 { ::vsegkin2dqVyutRSS07Gw/DC8eJn7L9AepPM9pZgBsxMHbUNZJZCzNQS12+vfeJJzXE0WuHp GwHkjsyIjM2evIle4w4iTjr/l3+m7u70qTrnmP7feRkd2dfZ1yTfaexYu7TTre8TnO/jrH/2 0hjzttds4w0yVnOOf2HG380067+X72ud10h/R5dO/7cGrd2bfz5v/s+XMu/0qdbnP7XHX85H Ps7ptLnd3u9jLWd6bztQ1bmO840mdLnmv7PnOgN+23sZc/+Vbf8y+n2ea6wcz7wXO+42mJ8w uDbea945l3M+1Vt1ba6hVrn2OuB3mPcac7yxDLv/pH2M7OohDfb+s3v6rTrhtta7xVLnuc5P Mu94DY7b3td6tvZ3Tn+xlWva704BlyPOu5+nWsm69jHG3/fWN9lZttt/3b/3P8px99vc9f8L f8D/+/dc969Q4hfDug9Hnp/w7/zf/xptTHWtodN+OtgFhps/4ZNaN2vbt3/bfvqfOd0877nv P84NShTf/Yz1afGx2527/B9glG3+IyXqm7N3syypF739l5ufcPf8A+h5zWsbzmdbv4O6r9rr 3t4zze2NcrP5ZX/G3yPTJ8j+j2Z9z/yHO/lXC6I96Hs3P2XZ2La//1h0f2Wkj/VspnOOd4v1 Gv9C/i34+z//eZ59en3kzvzcvN1+hXvO2gy+joA81szlHW9wpWPhXzmOuYEZu2XzWOs7045u Xm/O764pp9vude8zTf51vjX/5Mec/0iT/1+iLlWPbd773ta7pZ/f38LvI44z1p7Vth9NT6ll Ej0W9t6f/061f86CzeJ7+1WbfeH8of5bZLMsb32jHGXuCFNnBoOuZ3OAUvd3dMLdIlvb12lT fdu5uF7Wv7w8UtksxyVpurSzWbGltNtcZB/1FKxkLZrXlGvKtaqGXweVauLNHSWbRUS56CWj 3XcR3VxWDlXSev13lfhMxllshYIY7Wv1T55izLqKQ5lQB7ROcbStFv11tWbmnetG8FTXeVf6 mYJ56Xbs3+WM5QMl6y7uvaJnzXyPvuSQtDf0zdQPYN4q8sdZ5srJQvK3tWX3HWjhiz1v3+uL s6KBH1j3J6pUgRxbtnBU85Vqef3eywDFDdz0nE9kseE+i9V62Ts6tVPP4aXc2HKme6VQFRTe kxY7bI4peqxUs7pDd/WMkNmCFrsnIylypujI0jmRnJX5FI0tngzZih+XHNie8BgOl63rYPU6 85cM21TsbmuoJV41NGV5KeHqF634Y3eyuCSi6S7etUyCr8q0kyayucJ2jKJmvZdhKD6JWEkQ oy2VeKIqBWfKXpe6lA+cMjMlu4u14T1QI2L/SqCAoe446GaubPRrP7Y6fu7zC2oPwYYWZP+C O2YvKO3z2CoKqE7ezsEDRCLdPZl9gqRfknQhNzCxoN3tnS3eSuYFtW6i9qkQ458pu/p0tnUu kCpujokYRRzb2dbliKcFNZTlnQV2QMn6mZ1KmJCjdvQVZPoXSyyy3aQcEwP0Nza3eixz9R7i z3oHY/8gZ2P6yktF23t73Co1g9i/tvkTCxlih9dNdTK4DVjPQ5qKAvP5s8wtme40l8FLd2oZ fXOaEUSKwGLREgYnc4WLRhKBWMZJYAuy+SSrnIrDcynTgA0UhCZFpe7d/G9YSnfXlXQ223Wr 2LRz+KdvlvmNFezZXf0HNRhZ6ZLFtOYr0Umwcsffs2wjpYWBmS1qTpF2v3WRudhXI2w3V8hc W0kqDbohpoOb2yPZMpgA92tpsJgyKd2Uo72yANL4IEL76XM+IazS5qWGAJ1LMOsBWMmNoYUU l0oNAQHd2Eb+D1gMQul43l+T5KUTw5wlzMNP2DoO0K2I+kYU4dgroOJiIAVw4hF9WCBgU8qk aoxAQbdnxzQFRBaQSmAdWEGAldRweST5JK3QguxbOBCiVnO/JpaphlKG2b3mq3gEz7hgFkM2 UWf6EPA9pyBJEmDKODNXaXumlREs6k7IhEAx0Q1S/emdaRBGq+UnOBFKB4floORFw9LpKK1w CNOXRijYLPPLNLBGuKXf6knGSSdVawVSUD+QVzwqiZUbJhKFyZF51gUiS0hGVQYBqTnIE4m7 sSQsKcdRNp1L6ST210Ahqd0PnRYfYB4dgkUJGBapiQcV11yRcC0sDjBQHAYfxFQtlQhCVTKT whIuls9dEqAtkhhL2mM6AsajVn+5sOhYP6u5pJIDP0WowsMnVTjD0HLxosJiaYA0TUuQ2i2v VT3YCV9EPRmE6IOSbGpEhRBheNhdX2kpxRsEIPiSNKvbYFkCGsqJecES522rOCpgmho+jD/5 VNfASdG935SOe6Vc954IEXpihwqG9pToFUNhZMoB7zKXcNK3QfRPxVK6jkrljgLodcqGJnAH hWsNaHBbQP0FD0BkbE5glOOWhNggeQpNVLIbbwF1wdBGojgdeSpNGlboFuLPxVf+Ox8A5Lj4 QjSxDY+KkcwUX3kE69YAXuW8nkPFFfqB/LW1mQR6S1Miu8kRNtalkpBgg2AwMRW5qKjc0Oni k4mELz1Qg1GQSKdQ5vvIaTKdATWphrLdT7IMMhn0McZrqQ0LMAcZvqQEkl0mQWeXAMCSi8+Q cU9ADgMFvQZd7IbrPqkoSUnz9pKk5grYUpvoHo2EKubf0AeSFWCBmHJJ+UUdjyNIfOZmr0D3 J01Ll5thoORjJ41EAdE4BlJA/meNOUC6si+hswWPVS15RqDXRgvBaENXZqEoTxlU1F1pQJwn OwxxSaDT7JrQPBcA7YzNEJ9GhgLG9kOEPhbQeU14E5R9DOAsjo8iJZhuapwycvpqIYeTxsno NgGbSC7ei0U8tACfMFryHiEVvlZxeOZSrbujvKnnwMVAeEtJ9p/81xeFIDmatQ+Uen+9zctR RzFuGLWavmT2QPm8SVeES96xy8EqBDlAKCWeRJQDOGTN7oz0dzjohUsIfEBv8mVtYZihfBqB FR5qK83e9SS/G5xBKPeD1YRu+pQqpqltSHSOpeAMUE5WOGG67YUcaGiyjaByekK/Abw2Ina5 Y6DRFYCAnRGjsE5uhWiyrpNw3XqGa3e9dnIJFgZW4rZMwpYg8kUAPEUFe3+qtDBFvAsgInv+ XKgiCFY+ARMRzdQnrQ5O558AiEvIBj+FDBkAfdnB5tBB6fwwLC5F0ecniGIfwnY/uWPaGf9s sPC+/SQ071TwVUMdH8W5RqsykEDkTULPpGVs4G4buemKLnYYglDoEKIPt6gLezszeH7dOwyO MQWKxByG4TIg7eIqnfcwpecrihQxDWJrDgTypbz6mOZjepoKunL0NyXNvA4HnmE3gVx7zZqy pbVbxy3CZoqRNQ5GbFPUkxxyqMeOOPICWzSqo+t1uZFvCSsIxV+2aoIv4w2v+XQw39bCp/L/ o/3Xgr90t/PAA30zuC== } Title: Re: The power of fold Post by: knighty on September 08, 2011, 09:30:52 PM Subblue: Scary! in fact no but sometime I feel like people here read each other minds :alien:. Have you seen this picture by trafassel (http://www.fractalforums.com/index.php?action=gallery;sa=view;id=8417).
s31415: Wow! great work. Thank you very much. I'll try to study it. Title: Re: The power of fold Post by: subblue on September 08, 2011, 11:36:51 PM Subblue: Scary! in fact no but sometime I feel like people here read each other minds :alien:. Have you seen this picture by trafassel (http://www.fractalforums.com/index.php?action=gallery;sa=view;id=8417). Indeed! Cool pictureTitle: Re: The power of fold Post by: subblue on September 10, 2011, 10:49:46 PM This is a very interesting presentation with lots of nice hyperbolic kaleidoscopes:
http://bulatov.org/math/1107/ Title: Re: The power of fold Post by: s31415 on September 10, 2011, 11:20:42 PM Thanks for the link! These non-periodic Euclidean tilings near the end are amazing. I have to implement this...
Sam Title: Re: The power of fold Post by: knighty on September 10, 2011, 11:34:40 PM Tremendous work! It deserves a place in the "site of the month" thread :)
Humm... it should be doable with circular (spherical) foldings. I have cited bulatov's site in the evaldraw script attached to the OP but forgotten to do so in the fragmentarium one :/. I'm curious about his rendering technique. Maybe he is using foldings or a the technique described in this (awesome) paper (http://www.combinatorics.org/Volume_16/PDF/v16i2r12.pdf).(also forgotten to cite this one...) Title: Re: The power of fold Post by: knighty on September 12, 2011, 10:37:50 PM Humm... it should be doable with circular (spherical) foldings. Here is an evaldraw script:Code: static mi=10;//max iteration -{up} & {down} arrows. -{left} & {right} arrows -{page up} and {page down} - numeric pad {+} & {-} - {F7} & {shift]+{F7} |