Welcome to Fractal Forums

Fractal Art => Movies Showcase (Rate My Movie) => Topic started by: trafassel on March 10, 2010, 10:12:44 PM




Title: Another boring Mandelbulb flight
Post by: trafassel on March 10, 2010, 10:12:44 PM
A flight over the Mandelbulb set with low and high iterations.

http://www.youtube.com/watch?v=vq1b5p50d5k


Title: Re: Another boring Mandelbulb flight
Post by: KRAFTWERK on March 11, 2010, 08:52:27 AM
How can a Mandelbulb fligt ever be boring?  O0

Very nice Trafassel, iterations from 0 to ...how many?

AND I really would like to know wich mandelbulb formula you use for this rendering?


Title: Re: Another boring Mandelbulb flight
Post by: trafassel on March 14, 2010, 11:14:39 PM
The iteration range is from 2 to 30.

I use the following implementation of the Daniel White formula for the power 8 Mandelbulb:


        public override void Init() {
           base.Init();
           gr1=GetDouble("Formula.Static.Cycles");
           int tempGr=(int)gr1;
           gr1=gr1- tempGr;
           gr1=1-gr1;
           gr1*=2.4;
        }

        double gr1=0;

        public override long InSet(double ar, double ai, double aj,  double br, double bi, double bj, double bk, long zkl, bool invers) {
            double aar, aai, aaj;
            long tw;
            int n;
            int pow = 8;
            double gr =Math.Pow(10,gr1)+1.0;  // bailout value
            double theta, phi;
            double r_n = 0;
            aar = ar * ar; aai = ai * ai; aaj = aj * aj;
            tw = 0L;
            double r = Math.Sqrt(aar + aai + aaj);

            double phi_pow;
            double theta_pow;
            double sin_theta_pow;
            double rn_sin_theta_pow;

            for (n = 1; n < zkl; n++) {

                theta = Math.Atan2(Math.Sqrt(aar + aai), aj);
                phi = Math.Atan2(ai, ar);
                r_n = Math.Pow(r, pow);

                phi_pow=phi*pow;
                theta_pow=theta*pow;
                sin_theta_pow=Math.Sin(theta_pow);
                rn_sin_theta_pow=r_n* sin_theta_pow;

                ar =  rn_sin_theta_pow * Math.Cos(phi_pow)+br;
                ai = rn_sin_theta_pow * Math.Sin(phi_pow)+bi;
                aj = r_n * Math.Cos(theta_pow)+bj;

                aar = ar * ar; aai = ai * ai; aaj = aj * aj;
                r = Math.Sqrt(aar + aai + aaj);

                if (r > gr) { tw = n; break; }

            }

            if (invers) {
                if (tw == 0)
                    tw = 1;
                else
                    tw = 0;
            }
            return (tw);

        }


Title: Re: Another boring Mandelbulb flight
Post by: KRAFTWERK on March 15, 2010, 11:14:40 AM
Thanks for the formula clearification T!


Title: ... becomes more interesting ...
Post by: trafassel on March 16, 2010, 09:07:50 PM
http://www.youtube.com/watch?v=nw-B9TVAYvo