Title: Self-similar Dragon Post by: Dinkydau on October 29, 2017, 06:42:35 PM (https://pre00.deviantart.net/ac5c/th/pre/f/2017/302/d/4/self_similar_dragon_by_dinkydauset-dbs3atp.png) (https://dinkydauset.deviantart.com/art/Self-similar-Dragon-712311181) Mandel Machine, Mandelbrot set This Dragon has self-similarity. It contains smaller copies of itself, although less evolved ones. In a perfect world we would be able to zoom infinitely deep and achieve a true self-similar version, at least up to the accuracy constraint imposed by the number of pixels. This is the original Dragon I had in mind when I made Dragon (surface version) (http://www.fractalforums.com/images-showcase-(rate-my-fractal)/dragon-(surface-version)/). This is almost literally a continuation. The difference is that this one has 5 arms instead of 4, which required more depth for the same number of iterations of the zoom steps. I thought it would be too difficult to render, so I made Dragon (Deep version) (http://www.fractalforums.com/images-showcase-(rate-my-fractal)/dragon-(deep-version)/) first, which is a simpler version without self-symmetry. I also dug through some of my older stuff that I could reuse. I made use of the same initial patterns as in Evolution of S shapes (http://www.fractalforums.com/images-showcase-(rate-my-fractal)/evolution-of-trees/) and I based my gradient on it as well. Magnification: 2^8633 6.5468888359150892935974905928795 E2598 Location: Code: Re = -0.74962449737876708632428688583863161805724764174728489842581350478009924196371051186061531042851729401877554888588207632909280471327155749654632412828670058329271448205144616588547392183139237424780691558940653270671190836006325130717471182522974451180629034225046942220769321121840774722823709783993591237373056399149520730270772764235241481240837026397522065851135254206845291628922318837270313732169363762917152819500283773355695886355690038591950472848967495127636186419481346060083651444332154109221896755894236480405306814472313381744777616032252223889268633629991916689791836574369040449457273679455668885468347520138190098388744736013264444311283867370958135155905532109264875368458595561954039659629026247810545950619623014417164078212488147647678867783358038981429761772071302105931108534782968254346574880574955498275868607872478412116385297509513872493423485946320210596962550392680504095822315787353907576308208026422443762177013358874614962330244916815916458397957419335351989978106147380920297983492541749700129910041510548089467604030041688125326943672903510861684823729054228168630221500969294434751178667648792204443727753698185325779348569436903061841487735268379920218698778335285745925433092209934266590513617751758108073817714862126654454346610616488497665888489124777828291055847408099110223546747255293985805705474994445170312788739835716516868580660260039572138814578344511591056695511690451185807500893853059536363802071421774805612979238044373226743687355296029001610279922843925643285317936329605504262030766245129538487907267817174290352146944058781307853024840687097970711176708066504539818042858438920398324587409452884275731345693371416605957117632535628187734672203212081700300429031256581926216590031840090053167680785274690930616215319083010094948511383523936429038857482332370236310218982671862922618347237755359418893202073358931678603523317960277291573742778767097054841512883828855451462666096275437830905375230497911909958979650561412360727867123176089775827624788095081241846553013031981965410221172196255225605039509585471918987353474453546888830485271651462883096545014413555119850609354351166650822914355331788574206648091830836286933337403455938530535601661371685356480193597271371733650356199878947996341464846554539351322685914257003576214826500164533642609795512215955783730269873058068560778750922541949458435235567113460618391554942898938025366103603123484310355655057085809144029602426034781060978422749381135042927094943991068555164231995967243835333467282847151107351985941495765394632460004220917201638653758781487792351058676582177226176047527672388000 |