Welcome to Fractal Forums

Fractal Math, Chaos Theory & Research => The 3D Mandelbulb => Topic started by: avvie on February 12, 2010, 08:07:25 PM




Title: 2d Mandelbrot in Mandelbulb?
Post by: avvie on February 12, 2010, 08:07:25 PM
I found something by accident which seems quite interesting .. a little to the left from the center is what looks like very similar to the 2d mandelbrot fractal .. If I play a little with it i am sure I will find the exact shape .. but anyway.. the I mage I have is a bit large for this site so heres a direct link to the image

http://i46.tinypic.com/zjgftd.jpg


Title: Re: 2d Mandelbrot in Mandelbulb?
Post by: Timeroot on February 12, 2010, 08:18:32 PM
Hmm, that does look interesting. What program are you using? Can you provide some type of parameter files or (just the parameters) so that others can find it? I would like to point out that it might be a "Perpendicular Mandelbrot", the slice down the second order Mandelbulb. More would need to be sliced off in order to tell... Cool find! (And welcome to the forums!  ;D)


Title: Re: 2d Mandelbrot in Mandelbulb?
Post by: avvie on February 13, 2010, 04:08:14 AM
Thanks man!

I think its a crossection of plains not perceivable due to detail .. but bad coloring sometimes does help :D

 I am using Ultra fractal 5....
Code:
Mbulb1 {
::bUOtsgn2Ni12OOuNS03Hg5fww5lEMTLLSRKJnBEIX6ZBC2ZSmN9DBYxitBtEltyQdJSyub3f
  9bVkUSUyNCW9ErikHeYxiVxSFdysBp+7f7b2sZocQrEb/8hz6DktbeqMf4kgESZbOpKPeaQk
  EnuRLvq66FEcCZdq8yhexW5lLlqPQ3Ri2RDJhf4e5ly8NfW+1y6PQ2RStazC+naVZ9pzl9za
  /PIQfQ21rqVza3+23YWIDvyktDlN1itfCVtBoWTrMrc4KQuwNVqhTN5iqz6hyWZf/mhOZdfr
  sTVPIuq6f7bqkttl1HtYBaVdiwgwoUKLiFnw3dHIFGmyC5Ee6mK5xaR0bfTRTHgp0MrK5zl4
  0ohbaVdZnUZfV0UUspoUrqlVoR7z/jnKbjuP4cR12Nwi0dVs9P+lvEdPfLiQ7jn7VDdlHF1N
  gwgqHs222XA7Ju9IBA6P2fq5py6iGbfVNXATc/ASYLMF2DshrtKxnl15KNechdcO/oyBibQ/
  E0j4POBUf3veVjDubBIR3DEHPk2Ed/mX+v03ltF6sVfuHW9FjkBj8fdWC2gagqzjtvRXmLu/
  j7+FoLJeKZnGcG06OY2+lmy6B8UpdrrnX6KFh7CHl+zv6ka6OUOYM0xWYGt7sQs7DySdz5Bj
  Lp1WNI7GmwyIZxyObrC00BCZN194YxDb+uwg0RdwMAd0deDDnDxiRbzT45uZBqafqTgzLvEO
  zAjdqZKwB79fUs9fv5iUfW1jbSZW2ZwwdVwc7jyazpIRdH3K2nJ1jnWm2StG9WxJfeoBHdv1
  71N/+BVrg/x7YORlE8DF0AnKwPYQC4RnGSfvKfGBgkHKrdrAIgLiTys81g3uU7IEu6y8/8My
  4pDCDBs93pK0qshZX5+2TqO1ssdzGQdbf4UsH8geBbWfUrg2WbdTXurt8ZFOktP/+rv/l3/E
  aELrxD7RHRcD8V3tHoRmG8KoJpk9wNXjn0zXhTtY8oNGtxDv8kw5HkJrGvDdzHB3uNa9V8Kv
  ZwdNDit89BpJ7TIgrGNhzIk4UOLivjx/hv5OSc4DPEl4Nk9TDBGhJi2P8NEGhRf4h/OkoRQQ
  H7lCYRD3NdJHidB3VFfBiM0CGawdDtHtiIzl7MN006uew0mQRiDtITmLjURXDEDkadsRFHkQ
  grZZq1caaqVFmhOPdanJo/8wjmHe0hhKRgx6ZEHaaFeTlYCP9jHgwDnHUjKxTodTc5lxLmog
  b/7hQTXJGAfeCs5Vn9awzswPDBzfFYuVYSUmXCh5m3cZNVwFEA16cHENQwmOIvBk3BNEQrNv
  bzUcutm515WCMK10Va781G3bxVDUVtgr97Kg15b7/ruhv9KEAFCi+df32NFP+SRtoMH2t2Ji
  +q6mMxnayMrECw5hZ68zmWojwPVJ2WVVEAh5/eIB0j/oeA05y3AtCu84RItaXZmJT5oOYKQC
  kiDVjZLAtVN5QWs7LvshE7BQvCCiQoRMesTDm731EzNA7/kwkRNVySIdY7YUDUlECVKhYl/q
  JAjTZpJJ8nA7t0tRCyLzUTInfuq66oDlledtnsOAoo652pxeUWVJn7qCyHFGwnnqu5JMuF3J
  eCOLxbPxTfJjDUdRp7Fpe7eIXM84h+Z0L0yjhu4mjmgwl2gu+wF7/q2wJuCR/CFheYRWhFxh
  18876JzTvql4jFRQpTbMEO6cA/REprZH1HOqPcgAmAxb+AkRrYY0a8i8xLaxWvGmdUUQiPFZ
  rwjtGP2KrHznigQMEP1HQ+KA5viJk7zRuPgcR0+goFAGfrRMeNJj9BM2HwYBNNgs2KmsikJr
  BMxHwkVWxEBPIm6zx0V4luGvUBdhVEHAfGxUBZfQ8SD5+VYu/VMk7F0ZM3vEz9io4A+SeSCv
  1YSu5CDoxDWT/e4CypBM4MapJlczdHyN4SEMPcx+9PYQshrQ8gIySSTXjM91uWSXAO1AuHyw
  tJ4VqrMHRvi54mbUgmUPkx+Jr5NcxKMY/SHXy67WE2rxb8OkH84Y8oJCODyLmuymwfFmzvh5
  w1J/TSupQrbIPHe6WAx69hp2mSjCCjpNdJRdZeF/MUlVn8d/2A8Qz39wJZezT9j9DZYmTvkB
  hwDnfGzF8YBX6mjwYqV2m2kpALSZkwEghW1Y6IIb3UpWNHLQFJ2skNHtpasJNbh6/c+pmyWM
  MZxL2taMFaAPf2KZnrs6wcrx9O084MzBpDzdoNRHyLhlE3M4jCdAoxaSohTtJiEHCH04j9cv
  ZCTKbaqtvSJMw8UyuRJ0T+4kgDA/Oh3Qb3B/uqqx+mLATsyOhtWMQEqvCBe6R3gcnjmWpjLk
  O4JhbopFu+sdtsv0w0kIsVRCVLX2XeQrIOjjmgrKZudn3LwIerpR4wkAWcq43KKgiyNywjHv
  js7OqR4FxdRzggvckx3FZnIwW3tMd/JiJZuhh0ZLjji05TTN1jlUP7iR4ovwEFpeUcElpXQr
  pWOaa6IYsVaBBpeWDklR3wyoRDZkHFj8pY0IFd4E5zyoVGyoZKGNTxoJKOixCWGNiGSR2NUk
  NSRmjiOQY+sk5bIZ+UktiiLKUQzmZJbhhktgiMfKydU0Chjl8RWy9MkcfKy9pIfkiOewXxS+
  shkPTR+CKydU0BR/JuPLjvxQGPSxYPKGv6STsPLj9NkxroY8MFjXclJeBLjXYIjtLVZdPUyj
  93Oi/vuCIGu2WPw8PV7hBZdusLP4cme6nqdvqQeWPAFp0ce4/DQgqdYLAAqUid4uxa6uvsDq
  w2Vyz0vibq+vma9V3viz+7smS0M93IcxqmTP2M+bKKl9jx4aG/3KF1ZiszHUdDjR0d/EIXMd
  3f7owliyG/euU0ZTCUz3owjPU10Mca7qCXvp8P/ew2GIhuel5h1HD2L/RtYIT/Xs1zd6n0BP
  DG6cEIzhUvhmGfhy6c1zwDoMLggT2zSphOtESoTfaK0OK1pnySM/CXTXsEeCLx1TUSqT9eKh
  Fzg3b4+Fx+rLYLtDPc6HIT5wQ/fAE58MNB==
}


Title: Re: 2d Mandelbrot in Mandelbulb?
Post by: bib on February 14, 2010, 06:27:24 PM
I seriously doubt you could get a 2D zē+c M set from a cut in a 8+ order Mbulb...


Title: Re: 2d Mandelbrot in Mandelbulb?
Post by: Timeroot on February 14, 2010, 08:45:43 PM
bib, did you look at the picture? It certainly looks like one... or perhaps more like the slice perpendicular to it in the seconds order Mbulb... but it still looks a lot like both!


Title: Re: 2d Mandelbrot in Mandelbulb?
Post by: bib on February 15, 2010, 09:57:08 AM
Yes I looked at the picture. It looks similar to the 2D Mset simply because the 2D z^8+c looks like the z^2+c.

Anyway, if you manage to find a cut of the 8th order Mandelbulb that shows exactly the 2D M Set I would be very curious to see it.