Welcome to Fractal Forums

Fractal Art => Images Showcase (Rate My Fractal) => Topic started by: Dinkydau on March 01, 2017, 04:46:46 AM




Title: Hyperbolic Tiling
Post by: Dinkydau on March 01, 2017, 04:46:46 AM
(http://pre07.deviantart.net/51b1/th/pre/f/2017/059/5/9/hyperbolic_tiling_by_dinkydauset-db0s001.png) (http://dinkydauset.deviantart.com/art/Hyperbolic-tiling-666434305)

Mandel Machine, Mandelbrot Set

Magnification:
2^9528.267
1.96867349951058992570457297689 E2868

Coordinates:
Code:
Re = -1.756926777409492279550453516495033723680351314953727395189360515872146184591843562929235041931276915749278160980520618316430599415871996902596926862598035021255584780359396262195103803279188180322259185975758433064602552132685902087782172582697356951487949384199914512284706456295101378315964083825951399277140166495225573492107519435864376928215101754797308748653099155323500424032515503632943877540941269937753219332750031155997257007735630645001804442494410344515171761780837965521161145949929385718344997107345020550112919948961776859937561972610049462772673335327304076258007953562870277113009300095418403488865446349624538390601042906279212763227314317435836759464838665317512652364017941034905174924357215221204412825712886336785669960838326527167258178587327065912252216028873559063409529104931584692692134500802150917626258500072268676549828758054461099056624613561703907079114304441411645828874052609665087901806396679444769247624090395246295253991570412343388604004228551841070267194030149177053404030605049345402940003155186390145782038650457446514434143500620447691056585881261459299655399711689790193599046270438809240136354557216550198429382400223984533617303572588546333699081610972834933870340626327227263873972664302680491326889621766208985008128206782094777594759485937754618957774578011783469515555545589306785745131557049793598172372628494023058772990695301360598724233455573022856897294006377351644177790133565707507320517431312476992791655581495922606709237008260182963609026759904161533774943402149720247272619923789975954280408132982418523090357503950064049810275381455304812332611350772290023476349067342931280822650230215451088932235710819532125730515032718349973852039569381182780047071649999399010950402577732485884190229681745419899889400324258788221257745234332145712783319239143114542893397101480859243364440301724727539622960259114680337152700404342874878426944283206273252760074773693036543212057025886887184210438227745286516107498097379609380921624120125638294600743948376535275530028775460284706427375237177253858497182810864024185817898464458162536358678634664962216774612516892956062678968512625084441519452084642854447687123445565402152976805297583810123560650437547261665838721410557278761057329124085308304846206848035626113648381337565971204297522336234154437496733374391060530615816492542543185608666755611758563298984351255027866346971195557308627955342611839593122193130280933752639661289656890845254627729546830059608959698693685882283635741094038710656351875177620274636737097273520995463005583999891795889737123171928382263589714042966825778450326600903644812462386347339829431921919614685922225375584676585319678165881856852547109600616024576212020711822798011026463969302026843165277638119904827380877940569423848435757288129323983896603638162129032258462412091695918682819311830223063151636183984138597787668138578909122470
Im = 0.012173908090694117400914028111513437604936625482559659771763603873726107072844590000997222527757260109756238544155095317797354921317153228278646602801899836587359600289016682881969739277575609714449846813696853644277143319225719429734905270796374493631327669643407072832477468553858376876047739549059229204230481890995557454928684116818917908841711930809580148937066867557111016049458821584211227380986860548098232560049241966240668016534282351712772881929807250108661153334088891739857925891616283637900108882656126086660868515711210462511729758370998371753785213305318129950589451414140362283199762949263436322258150962827033016254824862776177013979401337028590483766614416603748376422613894001072716270443441587668136602203441400353803359385851855832308545875866661472016769156456868870760089480424298692580538537298090244522433214997971841405991936459236000878840378754437340870042851202147353784580582808116639853985830377410201535810803146558591131181606899703522345623558621485663672592232162595734481686658421658043774043245563004415507002567760602114568230071541296927687324564562784656460580447242769508348958685254206490784636428403685165861212226303491130794510137029492112779660686168529497617368030714445621049616297876442204707552942501720121200715531362769275256022229166299995448826011594963843360252142309211818070033852674433077159095081275281592576654503459467456900425381503132020470305413769890910232500283814694113160082298282780749747434686106130509408222964374402817061281789597926038965877316706757563363235088857021142872627893792650320347644967766669152668910345913823318485953145481142503405645013957188119769477791576161811615237398972421643902938351114464158849972331643331148154660038023745502416572757145463591041949943669425354093159591452347457156096624143498530037866025869926358777814654094339505287708258587787133721583847850034390162442232719058889755416116938967486109723646090990431066068865161031201851597179576189485819278493816779568754333864787935247755423704813914068845546044406988595707877429586486930681135691094419372220630765480089115679848721929957956854554471136637563280776261415252436732671019025854069683667032186222719308892164153266112380104376630942236638743302379898275762055307478414075700188394767262774171094901380097042646763821249469694582592264349876549235026653552636890202631074555353817163007744407482438367209415103560731916448403086113850747115391249442471118288779996925913291011219901901661911960578659718607263302004803662353800075865694645156759284590114615859664698554936479130117387490848851563453834706014424225649411612534577334904017516071175010449910725583894062148982783636280890963028842851287764076610389225531347910126520319758204277458861345653900349154882400101803499507349838984412398256455818451804263636797366761377809257490764190751471526021050045949333829014431020368677285241365402


Title: Re: Hyperbolic Tiling
Post by: youhn on March 01, 2017, 09:03:34 AM
Super cool man!

Reminder a bit of the geometry of anti-de Sitter space:

(https://upload.wikimedia.org/wikipedia/commons/1/13/Uniform_tiling_433-t0.png)

and also, of course, Escher:

(https://s-media-cache-ak0.pinimg.com/736x/ea/6f/ec/ea6fec8431e572a339519a31879f1a1c.jpg)


Title: Re: Hyperbolic Tiling
Post by: Kalles Fraktaler on March 01, 2017, 02:51:53 PM
Excellent!
I assume you found it using the Newton Raphson function in KF?
How long did it take to find the location?
How long did it take to render the result in MM and in what resolution?


Title: Re: Hyperbolic Tiling
Post by: Dinkydau on March 01, 2017, 03:37:02 PM
Thanks.

The devil and angel painting is my favorite by Escher.

Excellent!
I assume you found it using the Newton Raphson function in KF?
How long did it take to find the location?
How long did it take to render the result in MM and in what resolution?
Yes. The depth is a little overkill here because the structure was already clear a few morphings before this, but the Newton-Raphson zooming made it so easy. It may have taken a few days at most to reach this - I don't remember. The render time was 23 hours at 26640 × 19980.


Title: Re: Hyperbolic Tiling
Post by: TheRedshiftRider on March 01, 2017, 05:19:14 PM
Very cool!
:thumbsup1:

I am also a fan of Escher's work. I especially this one:
(https://upload.wikimedia.org/wikipedia/en/5/55/Escher_Circle_Limit_III.jpg)