Welcome to Fractal Forums

Fractal Software => Mandelbulb 3d => Topic started by: Yannis on December 25, 2016, 11:02:55 PM




Title: Another proposal for Mandelbrot3D
Post by: Yannis on December 25, 2016, 11:02:55 PM
Power 8, already known ?
Of course the rendering can be improved (here 2000x2000 shadowless)

(https://sites.google.com/site/yannispicart/galerie/2016-12-19_124555%20439finale01s%20gif.gif)
(https://sites.google.com/site/yannispicart/galerie/2016-12-11_235106%20439finale00s.gif)
(https://sites.google.com/site/yannispicart/galerie/2016-12-25_121450%20439finale02s%20gif.gif)


Title: Re: Another proposal for Mandelbrot3D
Post by: youhn on December 25, 2016, 11:13:44 PM
I count about 8 topics in 2016 in the scope of http://www.fractalforums.com/feature-request/ (specific Mandelbulber3D subforum, perhaps a better place also for your question/proposal)


Title: Re: Another proposal for Mandelbrot3D
Post by: DarkBeam on December 30, 2016, 11:13:33 AM
My mind reading device seems to not work temporarily. Can you write the formula under the images please? :police:


Title: Re: Another proposal for Mandelbrot3D
Post by: Yannis on February 05, 2017, 01:07:32 PM
Here is the method:

OM (x,y,z) and ||OM||= R, power: p
a0=atan(x/R)
a1=atan(y/R)
a2=atan(z/R)

For the multiplication:
x'=tan(p*a0)
y'=tan(p*a1)
z'=tan(p*a2)
and then I norm OM' by R power p

Bye




Title: Re: Another proposal for Mandelbrot3D
Post by: DarkBeam on February 05, 2017, 04:49:19 PM
Interestingly your formula can be expressed without using trigonometrics, since

https://www.wolframalpha.com/input/?i=tan(8*atan(x)) (https://www.wolframalpha.com/input/?i=tan(8*atan(x)))

Can be expressed as;

-(8 (x^7 - 7 x^5 + 7 x^3 - x))/(x^8 - 28 x^6 + 70 x^4 - 28 x^2 + 1)

And you explicitly mentioned "power 8".
So I can try to implement it somehow :D


Title: Re: Another proposal for Mandelbrot3D
Post by: DarkBeam on February 05, 2017, 05:50:34 PM
Since the rational polynome is a branch cut function, the result has no interest in Mb3d. I report the code and formula here for the interested people.

Code:
#include "utility_MATH.cpp" // include this always 1st - see my testing thread

void __attribute__((fastcall)) Formula(
             double* x,      // [eax]
             double* y,      // [edx]
             double* arg,    // [ebp+8], points to TIteration3Dext.C1
             void* dummy     // so we end w/ ret 8 as delphi expects
             );

          
__attribute__((packed)) struct TIteration3Dext {
double Cw,Rold,RStopD,x,y,z,w; // use with neg indizes before C1. w is also used for 3d ifs and abox analytic DE
double Px, Py, Pz;             //      actual position, never change these!  Can be used as input.
double Cx, Cy, Cz;             //+24   these are the constants for adding. Pxyz or the julia seed.  Cw is @-56 (begin of struct)
void*  PVar;                   //+48   the actual formulas adress of constants and vars, constants at offset 0 increasing, user vars below -8
float  SmoothItD;              //+52
double Rout;                   //+56   the square of the vector length, can be used as input
int    ItResultI;              //+64
int    maxIt;                  //+68
float  RStop;                  //+72
int    nHybrid[6];             //+76   all formulas iteration counts or single weights in interpol-hybrid
void*  fHPVar[6];              //+100  all formulas pointer to constants+vars, PVars-8=0.5, use PVar for the actual formula
void*  fHybrid[6];             //+124  the formulas adresses
int    CalcSIT;                //+148
int    DoJulia;                //+152
float  LNRStop;                //+156
int    DEoption;               //+160
float  fHln[6];                //+164  for SmoothIts
int    iRepeatFrom;            //+188
double OTrap;                  //+192
double VaryScale;              //+200  to use in vary by its
int    bFirstIt;               //+208  used also as iteration count, is set to 0 on it-start
int    bTmp;                   //+212  tmpBuf, free of use.
double Dfree1;                 //+216
double Dfree2;                 //+224
double Deriv1;                 //+232  for 4D first deriv or as full derivs
double Deriv2;                 //+240
double Deriv3;                 //+248
float  SMatrix4[4][4];         //+256  for 4d rotation, used like most other values only by the programs iteration loop procedure
};

// fastcall is not quite delphi fastcall.
// first two args are ok, third is in ecx in delphi, on stack here.
void __attribute__((fastcall)) Formula(
             double* x,      // [eax]
             double* y,      // [edx]
             double* arg,    // [ebp+8], points to TIteration3Dext.C1
             void* dummy     // so we end w/ ret 8 as delphi expects
             ) {
  // Compute ptr to proper start of TIteration3Dext struct.
  struct TIteration3Dext* cfg = (struct TIteration3Dext*)(arg-7);
  double* cnst = (double*)(cfg->PVar);
  int i;
  double vx[8], vy[8], vz[8];
  double OM = length(cfg->x,cfg->y,cfg->z);
  double MO = recip(OM);
  OM = intpow(OM,8);
  vx[0] = MO*cfg->x; vy[0] = MO*cfg->y; vz[0] = MO*cfg->z;
  for (i = 1; i < 8 ; i++)
{
vx[i] = vx[i-1] * vx[0];
vy[i] = vy[i-1] * vy[0];
vz[i] = vz[i-1] * vz[0];
    }
  cfg->x = OM*cnst[0]*(vx[0]+cnst[1]*vx[2]+cnst[2]*vx[4]-vx[6]) / (vx[7]+cnst[3]*vx[5]+cnst[4]*vx[3]+cnst[3]*vx[1]+load1()) + cfg->Cx;
  cfg->y = OM*cnst[0]*(vy[0]+cnst[1]*vy[2]+cnst[2]*vy[4]-vy[6]) / (vy[7]+cnst[3]*vy[5]+cnst[4]*vy[3]+cnst[3]*vy[1]+load1()) + cfg->Cy;
  cfg->z = OM*cnst[0]*(vz[0]+cnst[1]*vz[2]+cnst[2]*vz[4]-vz[6]) / (vz[7]+cnst[3]*vz[5]+cnst[4]*vz[3]+cnst[3]*vz[1]+load1()) + cfg->Cz;
}

edit;

an interesting variant, nothing exceptional though, can be got adding a fabs() to the denom so it never reach a negative value. I am adding this to the list...

example for x

Code:
cfg->x = OM*cnst[0]*(vx[0]+cnst[1]*vx[2]+cnst[2]*vx[4]-vx[6]) / (fabs(vx[7]+cnst[3]*vx[5]+cnst[4]*vx[3]+cnst[3]*vx[1])+load1()) + cfg->Cx;