Title: the equation of rotation is fully radical sqrts Post by: hgjf2 on August 28, 2016, 10:22:42 AM If determining the ortogonal matrixes (sum[j=1..n](T(a,j)^2-T(b,j)^2)=0 and sum[j=1..n](2*T(a,j)*T(b,j))=0 whatever a,b natural numbers 1<a<b<n. Having properties: two dimensions: T11 | T12 ______________________________________ +T12 | -+ T11 three dimensions: T11 | T12 | T13 _________________________________________ T21 | T22 | T23 _________________________________________ T31 | T32 | T33 where T22 = (-T11*T12*T21+T13*sqrt((T11^2+T12^2+T13^2)*(T12^2+T13^2-T21^2)))/(T12^2+T13^3) and T23= (-T11*T13*T21+T12*sqrt((T11^2+T12^2+T13^2)*(T12^2+T13^2-T21^2)))/(T12^2+T13^3) and T31 = +sqrt(T12^2+T13^2-T21^2) and T32= (-T11*T12*(+sqrt(T12^2+T13^2-T21^2))+T13*T21*sqrt(T11^2+T12^2+T13^2))/(T12^2+T13^2) and T33= (-T11*T13*(+sqrt(T12^2+T13^2-T21^2))+T12*T21*sqrt(T11^2+T12^2+T13^2))/(T12^2+T13^2) the radicals is and answer why the polynomial mandelbulb formula contain least a sqrt. four dimensions: T11 | T12 | T13 | T14 ___________________________________________________________ T21 | T22 | T23 | T24 ___________________________________________________________ T31 | T32 | T33 | T34 ___________________________________________________________ T41 | T42 | T43 | T44 where T23 = (-T11*T21*T13-T12*T22*T13+T14*sqrt(-(T13*T21)^2-(T14*T21)^2-(T13*T22)^2-(T14*T22)^2-(T11*T21)^2-2*T11*T12*T21*T22-(T12*T22)^2+(T11*T13)^2+(T11*T14)^2+(T12*T13)^2+(T12*14)^2+T13^4+2*(T13*T14)^2+T14^4))/(T13^2+T14^2)) and T24= (-T11*T21*T14-T12*T22*T14+T13*sqrt(-(T13*T21)^2-(T14*T21)^2-(T13*T22)^2-(T14*T22)^2-(T11*T21)^2-2*T11*T12*T21*T22-(T12*T22)^2+(T11*T13)^2+(T11*T14)^2+(T12*T13)^2+(T12*14)^2+T13^4+2*(T13*T14)^2+T14^4))/(T13^2+T14^2)) and T32 = (-T11*T12*T31-T21*T22*T31+sqrt(T12^2-T21^2+T13^2-T31^2+T14^2)*sqrt(-(T13*21)^2-(T14*T21)^2-(T13*T22)^2-(T14*T22)^2-(T11*T21)^2-2*T11*T12*T21*T22-(T12*T22)^2+(T11*T13)^2+(T11*T14)^2+(T12*T13)^2+(T12*14)^2+T13^4+ 2*(T13*T14)^2+T14^4))/(T13^2+T14^2)) and T41 = +sqrt(T12^2-T21^2+T13^2-T31^2+T14^2) and T42 = (-T11*T12*sqrt(T12^2-T21^2+T13^2-T31^2+T14^2)-T21*T22*sqrt(T12^2-T21^2+T13^2-T31^2+T14^2)+T31*sqrt(-(T13*T21)^2-(T14*T21)^2-(T13*T22)^2-(T14*T22)^2-(T11*T21)^2-2*T11*T12*T21*T22-(T12*T22)^2+(T11*T13)^2+(T11*T14)^2+(T12*T13)^2+(T12*14)^2+T13^4+2*(T13*T14)^2+T14^4))/(T13^2+T14^2)) and many terms. |