Title: Handel allegro dissect for fractal animation purpose Post by: spaciane on June 06, 2015, 01:16:30 AM This time I choose a musical piece which has nothing of minimalist.
Handel - Entrance to the Queen of Sheba https://www.youtube.com/watch?v=Hn4rOx55OWw For those who make there own program and any other music and fractal enthusiasts, Here is how I did it. I had such a blast doing this project, that I need to share! :) 5 txt files Legend of the table below: 1 Music bars 1-A milliseconde of the bar, the signature of the interpretation (artistic level) 2 Quick scenario (artistic level) 2-A Number of frames(each frame is twice deeper than previous) travelled in the act 2-B Act type 2-C Number of bars in the act 3 Scenario (Builded from the 2 previous files, then manually pofined) 3-A Ending frame of the act 3-B Act type 599 stand still 615 faded 101 and 201 are special type for the picture frame(Handel at the beginning) 3-C Faded fraction 1.0 means full fade(comes to full stop in between) 0.9 means partial fade(still move in between) 3-D Time per frame in the act (in case of stand still, time of the act) note: The smaller the faster zoom-in 3-E (omited and not used) widthDrift 3-F (omited and not used) heightDrift Here's come the hardest part... 4 Colored Frames (artistic level) 4-A Frame Number 4-B Mandelbrot iteration min 4-C Mandelbrot iteration max 5 Colored Scenario (Builded from file 3 and 4, then manually pofined) 5-A Time of the act 5-B Act type 101 Means Mandelbrot iteration between min and max are hidden(black). The Mandelbrot tide. 5-C (omited and not used) color drift 5-D color palette compression --> (used at the end(2:56) of the video, gave the illusion of not progressing in the fractal) 4-E Mandelbrot iteration min 4-F Mandelbrot iteration max Table: 1-A 2-A 2-B 2-C 3-A 3-B 3-C 3-D 4-A 4-B 4-C 5-A 5-B 5-D 5-E 5-F --------------------------------------------------------------------------------------------------------------------------------------------------- 426 22 999 0 22 599 1.000000 426 22 160 4096 426 101 1.000000 160 4096 2178 0 615 2 22 101 1.000000 4378 22 704 1224 4378 101 1.000000 704 1224 2200 2 615 2 24 201 1.000000 2110 24 704 1224 4220 101 1.000000 704 1224 2040 8 615 2 32 615 1.000000 551 32 704 1064 4408 101 1.000000 704 1064 2180 1 615 1 33 615 0.900000 2210 35 1056 1328 6425 101 1.000000 1056 1328 2210 1 615 1 34 615 0.900000 2045 63 2016 2288 15446 101 1.000000 2016 2288 2200 1 615 1 35 615 0.900000 2170 66 2464 2720 6450 101 1.000000 2464 2720 2210 6 615 2 41 615 1.000000 720 70 2592 2816 2592 101 1.000000 2592 2816 2045 8 615 2 49 615 1.000000 556 73 2592 2816 1944 101 1.000000 2592 2816 2170 14 615 3 63 615 1.000000 477 75 2976 3200 4370 101 1.000000 2976 3200 2300 1 615 1 64 615 0.900000 2190 89 3856 4112 8828 101 1.000000 3856 4112 2020 1 615 1 65 615 0.900000 2200 92 4512 4752 6579 101 1.000000 4512 4752 2230 1 615 1 66 615 0.900000 2060 98 5044 5276 4410 101 1.000000 5044 5276 2220 7 615 2 73 615 1.000000 648 106 5332 5896 4240 101 1.000000 5332 5896 2200 1 615 1 74 615 0.900000 2180 108 6020 6800 4596 101 1.000000 6020 6800 2160 1 615 1 75 615 0.900000 2190 121 8192 9036 8758 101 1.000000 8192 9036 2322 6 615 2 81 615 1.000000 730 123 9856 10264 4330 101 1.000000 9856 10264 2190 8 615 2 89 615 1.000000 556 129 11041 11839 4446 101 1.000000 11041 11839 2200 1 615 1 90 615 0.900000 2190 131 13736 14338 6752 101 1.000000 13736 14338 2060 1 615 1 91 615 0.900000 2190 155 15381 15687 6528 101 1.000000 15381 15687 2320 1 615 1 92 615 0.900000 2199 161 16081 16487 12984 101 1.000000 16081 16487 2217 6 615 2 98 615 1.000000 735 165 16753 17159 4360 101 1.000000 16753 17159 2180 8 615 2 106 615 1.000000 530 170 17653 17959 4365 101 1.000000 17653 17959 2190 1 615 1 107 615 0.900000 2226 176 18453 18807 4326 101 1.000000 18453 18807 2360 1 615 1 108 615 0.900000 2370 178 19285 19703 6532 101 1.000000 19285 19703 2020 6 615 2 114 615 1.000000 727 188 22523 23310 8510 101 1.000000 22523 23310 2330 7 615 2 121 615 1.000000 628 190 26165 27511 8600 101 1.000000 26165 27511 2120 1 615 1 122 615 0.900000 2320 196 27637 28087 4260 101 1.000000 27637 28087 2190 1 615 1 123 615 0.900000 2010 202 28831 29242 4272 101 1.000000 28831 29242 2190 6 615 2 129 615 1.000000 741 208 29845 30295 4248 101 1.000000 29845 30295 2199 2 615 3 131 615 1.000000 3376 211 31701 32151 6500 101 0.940000 31701 32151 2210 24 615 3 155 615 1.000000 272 216 32853 33767 4350 101 0.900000 32853 33767 2200 6 615 6 161 615 0.900000 2164 220 35957 37399 4348 101 0.860000 35957 37399 2190 4 615 2 165 615 0.900000 1090 224 41077 41831 4240 101 0.820000 41077 41831 2050 5 615 2 170 615 1.000000 873 225 42933 43703 2905 101 0.820000 42933 43703 2226 6 615 2 176 615 1.000000 721 2370 2 615 3 178 615 1.000000 3266 2193 5 615 2 183 615 1.000000 852 2170 5 615 2 188 615 1.000000 850 2200 2 615 4 190 615 1.000000 4300 2200 6 615 2 196 615 1.000000 710 2320 6 615 2 202 615 1.000000 712 2010 6 615 2 208 615 1.000000 708 2370 1 615 1 209 615 0.900000 2150 2080 1 615 1 210 615 0.900000 2160 2373 1 615 1 211 615 0.900000 2190 2170 5 615 2 216 615 1.000000 870 2210 4 615 2 220 615 1.000000 1087 2160 4 615 2 224 615 1.000000 1060 2340 1 615 1 225 615 1.000000 2955 2050 228 600 1.000000 600 2164 228 599 1.000000 3000 2200 2200 2170 2060 2190 2190 2170 2180 2187 2160 2166 2190 2160 2183 2190 2070 2050 2200 2180 2200 2170 2050 2200 2060 2195 2080 2210 2040 2150 2160 2190 2210 2140 2180 2170 2040 2200 2955 Title: Re: Handel allegro dissect for fractal animation purpose Post by: 3dickulus on June 06, 2015, 01:39:40 AM Bravo! encore! :music: Beautifully done, this has to be one of the nicest mandel zooms I've seen in a while, pure, simple, colourful, a real pleasure to view. :thumbsup1: |