Title: Deepest - e10000 Post by: Kalles Fraktaler on January 20, 2014, 05:03:14 PM I promise, I will never torture you with a deeper movie than this :D
And sorry for the bad music, it's probably just some boy sitting on his room playing with his untuned instruments... because I didn't want to waste any good music on this long and almost unwatchable movie. But I still wanted to make a new depth record that stands for a while! ;D http://www.youtube.com/watch?v=WgzW_jr0xSw I had to update my floatexp class (used when deeper than e4920) so that it is based on 2 instead of 10 and masks off the exponent and handle it separately. That made it much faster than before, which was necessary to be able to complete this render in reasonable time. The location is not the trivial on the imaginary axis, but was found automatically with my "Non-exact find Minibrot" halfway and then "Find Minibrot" for the rest. Here is the location parameters: Code: Re: -1.99998588117259620670407604775614559150672795464568671546481237222992775501011195323707719903333174302196725943094632346895116291367038324093877788301447988166182255044554491872309188095577998715453415842115841100945624225634748939408972913628362157469867877593737533061362361558017439302399873532709404950721679544458670689769842294533292718355206857568620748292304595382911451030247990619271546382419371501836974386618189294770862746145410339890608653615282316523474055027299313564644645001254886779519060368883552433194987773417900162866019374285851149125488836541383062144728735478551619677893848696013185680116831999401073954399677438786546041674701667152922112028815047237432755050277341078648905476903836103751293450955307252580872592393929278834142678171859365489013943713764488251788176016442158331674558680983362406185888368410306651455750817452990490265297946847532097709792873059466757510234298176905951929122693480373302768040042554576098087188629059747643340786001300224768416575087156705698472582946984097401609410341134374744078603786746331817134274983746114450517995254459094586826720152989428976983487663474595303200811396349200015550934278665240516933634097960112494872444572136230014090357511923042731606125631555078135687208809530908342124663028093296821883583573459358697073628869161796741471631664338504712491705479882628128756384570342362956893913841344136419718739477879037194634465885433039628414043098819222900332083871188022964663312463710583835588060567298885500125966038310418367559334178616171134128531108174279803391895190095844803703627269041279756611176398572776285886909940287628144345824545432583447675858756166396723326196999472812820824239652274784759475564464448759888090647326252628376727413558729727449417817778140916689654932438976239865240298207049567277862112579427214363837846674116096013367648231816835988311886859240740529312267515062673729965441527258079743965723461612143500001698723665529458821222606948243243184603420612672194950004865295770436999593536345918427983499557969184445344945872322887540911948444280714345258315931154542740240036120158675110666043643668102950858846778938595615828980697475212586926808518883798178349802860672451379405442694152675367960197570536018451989414734164759082673335606365806431237418442702633570638603916274484450947062103766178549149331517080915278565752829770958584465093795916829387433807401092228436713809959217883380709688309938120552244977854769440618216124101692027748413631889959944041798605816920631692199982820327818377690277746687949365894159165613091012919533599777841809179225597284841910695493673502965220198020788358805589935822728287915747317688094522070112435982964802548852091778233037083128139044622020699648989419091137165913817683117984060723571157692066523025313964951339382624632913146164027375764553827132734225793610868036006022686324858024467822382541989340992083693190489192014778984679396937830598824108098532835651821219549962084608281432282800726469257644467969183188001560819911599978686674083041263080382675433146005584346818815596815802000368790185925678004927961697087091941068270291707454403090922948091658762704635613886947421077283582303680881266347475886617856369832526011184991770155664624769758823991562129497692820192714887103386535498736242089267801966402325878246231479385988300131306256395495767407833572369842769825181171497082081074779871298098527500604679086031954201401175938262477349322912099796492877932772541852230201106447761163626065868158734890838482308275699998978153413128237080124532658441317197294068556707629732153677953553842120023004601773934091514404775556333239221935900367188603867245241909683878595867646284612205243249013949419761954263983633806877498601212527282056067626077212534879496610275839689825019887472276315612107221408981504623345049396445839151556654686112331729485259245906020108990196557385120114999696849999674880480222957598634663104195601978844541574840696275444325818719039910318568083633849651514771589562756910491147056668184139949265423630603004661399206708087152157333074413189801666823669072386857246364006063306968648861779500855218257456625253235091372357779947303193254451296087799685358883956531216831762681544577143462588985285905936268911206262566202650983081991432463955202047614149942446574208816444608252353423313731176547980294319731510643053375862692292519721622816803805544819312982727649032036953262797814967535019487403119731904527609141604907273165766788303868315716227872215051777302177525592131074773064958378954415202256685786614944649514035553532748150867365748221287249397186018792685869225862938001110160189201985340407772251288670928386444114040060865070355465303643971774400061082919688508288200541114504587723170317154232237307670427673792485706856556429798956775358636026602327824481532678002459381127722385954431071675160967382033899221791845334406952591968866586178309083738465040515707275498554343325017447772866340644009365499957599924462399187292514861196514077337040784683428978092951282367473830017739069246773853630006465219876729432616695517913856052274947831134296889908314951140934071405149814648565185692537160705440230338879237807243540089358208399180045846711932363156388842208030361531037111477928097313353361980118278751398337698049530405195918784147826568518469200382780494507631888480287620328035207286637557091612764160039142453129797152463650362934165755632512680970242468842592634182261525250563936857036831009655626681668439047904821668117471337891691235602765455015833043513181130251045235980429973932374101381176758954304305307666187235211272096676127671563337979259779280540990629090274461359122029086175167267888523122078359461494011934208095647198584956591859217882885599323722752606795996904185019698937784267572761731623641979043671830506686757755815957939112718118509234121577813640030758627053443867206920256906840090675188175681333194181615485412111690190781170705640995988977278196090430570357579756612753969928556031808509779303077666156614311346491489617769924869385885396794835253355204592279453842747596249407859522151059522108391406510450986848115007842838783604925045612204870629527818766952832364546803280981456345705209107889719278468869534790634892634594662169051293383698283457303714140754461609533404675438866418141603680385082266906295999738161079175820142373245409766736563702341024150282130505078265127146898557356815356046961926600202025352202375676852313755305233089381138286071022535827824647078490691217933894421777877162403742144900066146393099854123199765686172713002379078395957328065678343394921764064150592085338213235133360145426426536284521642722011864828154397440604449742847559322851851871655189240855597073622149168824709892929724857046940858491381088828835380122689191269569007715852814576842367435820659758915459119327257637830071367157211085232455882550627792222421405099025518201152098022488813201185371188165024653208904243766097139019886309204648226087915795791515013543563897376921960651626296660212912458584479530688316305247679948302921369530628272415430904407977311599361747631027632894780395319727044657082072874356612752825212352113604909563186044964266454116421552552379517579239706758862314832895657500421213265477367838716779198649437570698589169379062462129678262174507153738604638077296991092636952529422254090193460032978623611777956655370107060357494592960163426966262110055891133435759084618547000469277424814962877782557017715089817252625523265361933890665094146847098450781182088770468627030299765940994598331567137329747868814961687679015609340310425949529314131257442346857685213202602627945750807719081876915175864490166578666192757795372335620048486583902710213424320740358320610283119267803293965867727811342347201191200203334103362903194636430596492779947405751182463659756598787541105910588750722588414164731895351476213640247755326894493349293822383435625301706352158548784245040122347808432252559562746015337348191320874106478510835587108679750194157603509571256824228306191961461436449610639148566887704845751587294907512766047454138237995587394604162799430686961850587447491570324626309966709312531963641935248666568056668968713010636620675446055534666447038360119323188384829454126333607967934515790069850640939166943813259417974635474451369524978154962745890176636047813468138945374965275377454040117564018690314786269046387879972227306522475843184673574733330006383798915013874933289623340364389394686334688360847709743218669212957640550223213892798958553154801950105470991204220946579947206196071917692780162382588984714884027762893052634012270020619109272424910393693094331492064267296935826091187475443660592814320884273448062741307326582654551430534821536351922753984062544610673456197176709892606611212491553955297888734039231787348964373358834614664141613438478529695928709440161831111614005538619699549088603166167493823203139897368820842036200685466770494916281483365860617126225476314419869095580639823394715167944847843026344028442141228022143882053788913613767218085127184516098346025650847221336517633074235774031981084235840083852184106325813920238706785401529867995779751360913122876023619407450305835300435508225218742074637715653791859371820348381301078819105811771117188780388301057102367127306625682694155715823423586438948171520099898307518207456859453572493661823553440443618230999955486605919684548657568441110104772029675889699667117214809984512536720864933514228703155712766157010851378507752776176498391889652286469951270812446621925581641695454049245070844248120994102710939251205287656766279185200637798419175489553669748899509116938976277087270132501670946020459081110825707700149832017971136532161749609076910955408289826726055383340517733557011863578413810776171749376621581587775393450703231937837219973150364475944028155140625292064543677998355236282209438789141585313428705613297170416557874467335331319573111784117508386353610979860307285182200887424999982736922687457091840002270920899166493340342317306310827495058311270237099320655152610554903171786700953977803449439924120122356725539057789048653781428572 Title: Re: Deepest - e10000 Post by: cKleinhuis on January 20, 2014, 05:17:50 PM dude, congrats :D, render time !?
i am just going to watch the end of it now :D Title: Re: Deepest - e10000 Post by: cKleinhuis on January 20, 2014, 05:19:16 PM ehrm, you didnt mention the speed of the zoom, could not watch it for more than 10 seconds ;)
and the low quality :( Title: Re: Deepest - e10000 Post by: Dinkydau on January 20, 2014, 05:26:59 PM Can you upload the original video file?
Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on January 20, 2014, 06:25:02 PM ehrm, you didnt mention the speed of the zoom, could not watch it for more than 10 seconds ;) I said almost unwatchable movie, maybe I should have excluded "almost"? :)and the low quality :( Still, it's 46 minutes long and it was not meant to be enjoyable, only prestige ;D Can you upload the original video file? OK, I will, but unfortunately it also has low resolution, because the key frames in the end of the movie were rendered with only 320x180 pixels. It still took some awful lot of time, perhaps 2-3 months if I hadn't stopped it from time to time to render more interesting stuff. I started the render in September, but also finding the minibrot took some month.Title: Re: Deepest - e10000 Post by: Dinkydau on January 20, 2014, 07:57:25 PM When you were working on kalles fraktaler, I said:
That sounds very interesting, asdklfjdf! Let's see how long it takes for someone to render a zoom to e10000. It has been done! Title: Re: Deepest - e10000 Post by: cKleinhuis on January 20, 2014, 08:06:37 PM nevertheless, it seems it is a ridiculous deep mandelbrot ;)
i am going to check it now out with your program ;) Title: Re: Deepest - e10000 Post by: cKleinhuis on January 20, 2014, 08:12:09 PM hmm, it is located near x axis, ok, hmm, but how to insert such a number to your program ?!
when copying it, it somehow cuts off the end of the number :( Title: Re: Deepest - e10000 Post by: youhn on January 20, 2014, 09:34:17 PM Perhaps something to do with "...wanted to make a new depth record that stands for a while! grin"
@Dinkydau, that actually did not take very long. Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on January 20, 2014, 10:06:53 PM It has been done! No, this was way before that, I made my e5000 in between, and many other things. June seems long time ago. I begun searching for this minibrot in August. hmm, it is located near x axis, ok, hmm, but how to insert such a number to your program ?! I put it for download here http://biphome.spray.se/karl.runmo/e10000.kfr (http://biphome.spray.se/karl.runmo/e10000.kfr)when copying it, it somehow cuts off the end of the number :( It is not on the x-axis, which is a cheat I did with my e5000 movie. But the path is mostly found by the program and not manually. A warning, it takes hours just to calculate the reference point, 1.5 million iterations with 10002 decimals. Even though my arbitrary precision code, that I published on codeproject.com, is faster than all others I compared it with (which doesn't include what's in Fractal eXtreme...), and I have updated this code further since codeproject.com and optimized it for fractal computation by removing exponent and make all numbers aligned, so it is at least 2 times faster, it takes long time. Also the "arbitrary exponent with double precision" class is updated and more than twice faster, but I started the render before that. I will put it in next version. Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on January 21, 2014, 10:44:45 AM Can you upload the original video file? https://mega.co.nz/#!fFRVGYCS!G5YTripB8rNADgJFu6qcBAYTbS8g32IMDy0mEJK0hqs (https://mega.co.nz/#!fFRVGYCS!G5YTripB8rNADgJFu6qcBAYTbS8g32IMDy0mEJK0hqs)Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on January 24, 2014, 05:39:28 PM I changed the audio on this movie. The previous was terrible... Even NOISM use tuned instruments...
Title: Re: Deepest - e10000 Post by: TheRedshiftRider on November 04, 2014, 08:19:27 PM Amazing video.
But what was the zooming speed, how many frames for every keyframe? Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on November 04, 2014, 11:23:41 PM Amazing video. Most of these frames were rendered with zoom level 4 instead of 2. And then I think 4-5 movie frames per key frame. But what was the zooming speed, how many frames for every keyframe? Title: Re: Deepest - e10000 Post by: hapf on February 03, 2016, 02:40:50 PM Why is a point on the real axis cheating? And why did it take so long to find one not on the real axis? Or did it need to have other special properties beyond not being on the real axis?
Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on February 03, 2016, 11:31:54 PM Because you can enter r=0 and i=0.97 and any depth and still be within the Mandelbrot set
Title: Re: Deepest - e10000 Post by: hapf on February 04, 2016, 10:10:25 AM Because you can enter r=0 and i=0.97 and any depth and still be within the Mandelbrot set That point is outside the set and not on the real axis. :hmh: Why are points on the real axis in the antenna region cheating?Title: Re: Deepest - e10000 Post by: Chillheimer on February 04, 2016, 02:08:36 PM i guess because you don't have to actually zoom there, to know that it is within the mandelbrot set. you just enter a number and can be sure that it is part of the set.
the usual way we zoomers work is to find these points manually by zooming towards the border for hours and hours.. so just entering a number and say "I zoomed to this record depth" could be considered "cheating". (though, who cares ;)) Title: Re: Deepest - e10000 Post by: hapf on February 04, 2016, 03:10:02 PM i guess because you don't have to actually zoom there, to know that it is within the mandelbrot set. you just enter a number and can be sure that it is part of the set. While all of the antenna till -2 as limes is part of the set it's towards -2 visually mostly empty space around a line or straight or bent line like structures. Finding the minibrots visually with zooming is not easier than when going up one of the lines away from the antenna. Finding a minibrot automatically should be as easy on the antenna or off. The deeper you go the longer it takes, though. Why it would be take 2 months I don't understand, unless one zooms in visually which is not necessary.the usual way we zoomers work is to find these points manually by zooming towards the border for hours and hours.. so just entering a number and say "I zoomed to this record depth" could be considered "cheating". (though, who cares ;)) Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on February 04, 2016, 04:12:06 PM Sorry, I meant you can enter Re: -1.97 and Im: 0 and any zoom value.
Why it would be take 2 months I don't understand, unless one zooms in visually which is not necessary. Yes, finding this location was mainly done automatically, and yes that took 2 months.First, the Series approximation was not as effective as it is now, since it was using only 3 terms at that time, and thankfully Botond Kosa showed me how to make arbitrary number of terms. Second, the data type I use in Kalles Fraktaler was not as effective when it was 10-based as it is now when it is 2-based. This data type is used beyond e4900, so going deeper than that is significantly slower. (actually, if depth would still be the most important thing to do, long double could be scaled and be used down to e9800, but I haven't bothered to implement that) Anyway, finding the location at e5000 was not so time consuming, but then centering the zoom until the minibrot was very time consuming even though it was automated. Have you ever tried it, if you think two months is a long time to do this? Title: Re: Deepest - e10000 Post by: hapf on February 04, 2016, 05:29:35 PM Sorry, I meant you can enter Re: -1.97 and Im: 0 and any zoom value.Yes, finding this location was mainly done automatically, and yes that took 2 months. If I just want a minibrot that deep and that's all I want I would not need series approximation, only arbitrary precision Newton iterations. While these take longer and longer as bits go up going to e-10000 is a matter of hours, not months, I would say. Computing the reference then would take some hours again, depending on iterations needed and order of series approximation used.First, the Series approximation was not as effective as it is now, since it was using only 3 terms at that time, and thankfully Botond Kosa showed me how to make arbitrary number of terms. Second, the data type I use in Kalles Fraktaler was not as effective when it was 10-based as it is now when it is 2-based. This data type is used beyond e4900, so going deeper than that is significantly slower. (actually, if depth would still be the most important thing to do, long double could be scaled and be used down to e9800, but I haven't bothered to implement that) Anyway, finding the location at e5000 was not so time consuming, but then centering the zoom until the minibrot was very time consuming even though it was automated. Have you ever tried it, if you think two months is a long time to do this? Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on February 04, 2016, 07:01:18 PM If I just want a minibrot that deep and that's all I want I would not need series approximation, only arbitrary precision Newton iterations. While these take longer and longer as bits go up going to e-10000 is a matter of hours, not months, I would say. Computing the reference then would take some hours again, depending on iterations needed and order of series approximation used. The automation in my case was made by finding symmetric center of the image pattern. If you have a mathematical solution it would be very interesting if you would explain that :)Title: Re: Deepest - e10000 Post by: claude on February 04, 2016, 07:22:33 PM Each minibrot (and each bulb) has an integer period P, so you solve
This post of mine has some pictures with basins for low periods: http://mathr.co.uk/blog/2012-12-25_mandelbrot_set_newton_basins.html Title: Re: Deepest - e10000 Post by: hapf on February 04, 2016, 09:03:40 PM The automation in my case was made by finding symmetric center of the image pattern. If you have a mathematical solution it would be very interesting if you would explain that :) See claude's posting. ;DTitle: Re: Deepest - e10000 Post by: Kalles Fraktaler on February 05, 2016, 03:51:15 PM Ok. Please give the parameters for a minibrot deeper than e10000 then... ;)
Title: Re: Deepest - e10000 Post by: claude on February 05, 2016, 04:58:43 PM Using my mandelbrot-numerics (http://code.mathr.co.uk/mandelbrot-numerics) code to find a period 20000 minibrot near
Code: $ time ( m-size 50000 `m-nucleus 50000 0 1 20000 32 | tee /dev/stderr` 20000 ) with results: Code: Real: -7.9437163502071985489173816041278335565557165593422097986415443718666526638183975269482741283979864796150039328820600171824357494796904100157145276457381327038677304389065791544759044068226298284798485074795465139753011290574940547565632295268309965890736856044225816065002060784840401957436001592831073232116289224835376766024837019729052593614702740064116283928435871912023279827933594666780735810543887516779374159354732526673506932730255777860864410617962251986612293528344539369634355763385689632183660361344255846109415319987535013048216370406305683033823649556367343903980453528078550807179972805086726177286676432146600418321802012705947183289186915513177714879362378374485500397855616627594598759238285491434600163661656097093569019464247435079968347293144424227930353208249468172472673021579306852412165125553964864288143879390896150333653457265029413832025627226640151187411034335007580482643346655743497049637725677688986423224436940553132460564725885956480187539465814934618297444604422558707577928894218074677873014006311238296593575712979281521376321522028222864880290047385477309492930859941138933523459312865570596181676682065664641625195711959850159891958399655264891695837255722367048386224829361833770848853678382189241483407917363077785688704033915945145445141382032098503113386121141821618976435909826878012810311315238838927942886145795725258557067351714858363660176807474230411907332988496361646952820878046993327965167592505974342069923145251125405511298210735382002351444475111195883871537375357019225324966837329585172700415064929059719568669415835536305907605195015067551532717806048959958720723351540772045136711267008091434857778994767951971042965880533276128160757945671341024842631669739934842190421628745823057485321876759312698540929225608881625608367714997633793882137116252066659684867523320525998235559519150039569822804344024248346045328260662350506766959441224921002078134780987834208399572026751630341064076128585432804822899645121908649438079186104626223225086835026727973207053106933545605807581086173838972807582278495224764921308243782567040001796469511628492096380473864043528112882638850008499650397617471312161946511543108954047732214732604192518761590429256338997424173451213591713726558272002992188667406903054868988361837689051267067909007940396165686808795106868838064855005108089621233950746964278729824349462021919452828912238487948591999838204600089889473079741079883341554696124986558349029858769442566619743815502763844097701527868328322323759228519682883781772486449895023296886890395156702488270397371139695710695990682206272068513184347868985875355437735986097344366110220146098454669911676872422507466726262772844396687992023980393180412252620962951600694487648989414046125141359107741643310781724540269445598327469901679273898223648390876129705793738640048570537095417043836345968852339629450002567700189777577964846790537104618393106879939835732394904152494946398727231384913787249745823001738289311645727103810197887877515539458354319263104285589267937979420741297746874900374889388549539632838441649971129535778931268439396997823639463581253024656692066840729143014425564553465530544851212792187013660966565334102233995602996284005853152619476167135763137548181086648741615317739115246457134590756369220988612182423106888272870894941766951250687466714807759040424513113776919266305284693482786000012318355370203000510649927436937799090573931965327514602174194247869031450849888578824607292360533650605659626633451928857198284911861895518252866768510849271811271674466215339007494425799589266330368037494808523322072015355702363872561150182139487288949855852914835191151647214953580577992765768923589452140092207774849659839859152689402490049014646780450855312634212041907597487788211223125953582387474055558632251459696857778410866837388535466178076110887271500918602073599110008782828349828601931359617357488907006692730574882684291152057556083434843531655449794230421218496348063440957859520929997115553713223272459893888222599714500315885758226251226383907100867373946949159210357809409066172026448365305726879690385903084965357293868883959241495118228357461132946108953197235701605108487932988139914383636638205336622907254521211337215354959781371499838940575460882923252535688983896279577141026183725803250025941366898551995317381343295602432854880680913105417171403478847572564220151501945641257407256340713758082071177905993565684176799173836494504063303062708493883917533694417688017619038230941678760662664057011965910800231539615509203568524423393735430913683843408798930423887383733707108315296851537552773795174571699872575675465307644486366568477860016882096508306899350495745941389774331465508906343167441651902671583925484007761590126001875408698776037548173000537310514627103673719106723875477565011787438594421891881293376341836817387959998884620172811186225741103273771975399857174630178915209374630124944654809434747663998641540089249451044747343793912738684530410065341666811576503875144080041376635588445419247720870201032961075580784574643803834224040349515934580424790949301603070840039881116983632470720266625847077403948483754828340322244591513248736220612802960652020455915703123428617077016498405385864432461997065871572070257516341957020978947252938690548377219964733666078050655650666746125819484651038400639111767173754889123755628492910863471339403636445116498685130083472801719762230149643141939154039001471145670460001527706331210349655036747526294372592292737874421182976105207938866601322001196843303227985801688904265826419497214272904851901075941514972117647200278204061021869787050146340891622184720663076877881386068868416366064471354402886662288552667078706482937945747653944295880393480095834773836964538912825459369034140530990210203217740376593495298910340327466503746890581057555405215105328622050072523451061799089554563726997933998099494022843643356810171935875956083213474450964753871742597596389159807474860548937449082552764665987353842664468415487133534606684963715041757839071452744227881047305656416036812546802774367092104370634445506994254300152537889204524138962819925474418837039981003771901730655105777080171387232652844063902421538914319305968703705473681853824215543410439200761681559696856513162963772239637111929231912298561552761476051768494603150247970255274087139475417437666525318837699314477624013690658187766683186987513666300409400279403768729919447855449000797444258300988278145284834950271127363489449639121339411432241394689045849625215128792858854683514551608992163329455011784996662465048627222172830045774045434488939393408845069630045746752624798539349705914385735569651595250218651352938215626071449610093033419595771219480026325620655464072741468432773768618336398345601286278453384744487239861535583484271197660008924457670571819830930013272839428183593854035761689365351460247606170808699221660877760009044931352005199906138059024299151054829073698920465120899137076026463287302396273561452735416778600019151509061871192996649944544635251255611180939657319086749495750406650703523104631376966634580854744528028348644766661861687803874476503066257968690726504793327378255680115059130846355163503033322685363135207492701334721066801514843289941471860778761567160868619351770348032409538305377970923902100885197699029395920849667846810993094612702293706672531075824284278002289430678551378565535722768390905768325693280507976229296441994336567584568603213159337614179963913967140245071426406010126568343361152854104386871950971193764271019726152905089469444204032522564569281201767167121304137166303415015387588952606612266240324729892259808131866274224382895297824105879377663513842630692659814953190082184611299068317174185652027168995389944464563646470703089248951504008599661061822888980138794720478053691503842822034170421882089481794863846177177647112938213372331349756322623026418328473098549683499447951740645257409574863864331936413558808652101756422536878243221845141405047163092445446309652337506812857818627712672119535182802674487218494516703692576818047705180818990227687611349865697646700417084858530111203684655604862529459824809506713267533309643092879524182664685875269816703424729371134632023211821682751089970776093301423791969260953108431784555846379656677296878357053153268291167052511154697766977051318490201590272694053975247144309260438403419516059314927198140682502647753867140477723365586992936626937070645112420562978420494969180857648414886732128746833394793338951136536812507919552105463278901514836838501627409427945166072127389034634662362535768301094003301978784609662103275295887490983814104476638090203027305898662646192580113323630177677789960362015187337059766586565991561230871896736278580930538113756251722826451445081763396147220450655330971575966542768165629827950058414694457612107002519813422137935933949051802958001466676705218971585089638867365108649794271967367583738948555076277154455873640422096572950582246453668223767071601874641607213366687118498245978253390109444418995997750392780107313255139840820773405754956577553794289770409116409571420228693380230025899437603870877054542784281317586453244622402660818643831821462226891660685072457573117889485902077797412004329040165095691873500314917343659203512085778821361204452523870368136469226149736015867804245577929236392814077339316439392508508206520959727928573800885094153800553314652906939293080711662049154470341556580077893261447671240157808246582347200333618553406085052554826594036992297841269796755362033887196089006252179737733109866573340227539862034141198839388081519872826063624800513941456162727625429496413744959884317434642624473125087427423717708382301927586834616549672826513360395335642137272724139545454739463104449628322251582845457933561149241779746747083923968435596911958159633854978255431018163676494053663975309474153510434284245769525836241401382297602993004553331413623115085862521547918233116144303815147644592323844409534033312591272415940304330316480139161832153930361866639526736202903837917442316305999918735106124476264198373838671169480263093073548771272893575807108321917398785294490102026462289081419098788347663282918233719927616971290489000448605479370675888150101653436770635409683915707260833378384329978382632001535926336764826666274559700141470555541357684564795628678577384149810990074344641965294243434863683046415340191004534007747861984920997073615420680497487884717648552467181792474987367112740072255272190588800538041606909185987209170159028084428459572622258803142739029327530812085898685496500033506607514853966450810131101320181576443944528119520678262542516665667772589225658367409437310308191692681701747929941825717813914760436490027296973273696885927024209476169849577627774609821735288543579823873933746165418041525243007331797265820048090493269547699807443692298819880238271902411894022717673853039050368938062710759904516779434177910027164576717375460649435897796076715236692576082399547459593785193303729528593113309230666964408518409037311263890279582964898612945710648622089308353146591558950556457774096875906864050442683109026765888050991130358931886565546257805826690073777858095011429817715273547968084945928031301599621650496157700528460843729211007404968844131661389160468042607031052067033392469344850696050409683463254404597341777664046659525995421309405891229261642956098092899701872432918414448769927311569703420232182442026732210734846569104330914950450386817272059918946706401776070037996180381660685319130717417939927179286304468696802295571418406036768424662411467135246405133085173144139264971120263053400301163186239059701230700612814579728270543021200439105129200019275455983470874139432086875339191481441412783871068993677566173792832145720122415779284407893352668293527601354952001547147784537072825711418553102839482249087891314635317734225217087825443501818465384174890328302318165740210720929441444953628896415212119842220277809228686748800353964121521758377906665150446944597690876685717728001020923030903467397889577625987702929819042793216861981297432410751862996742939821733552376022465063980433476877095489742083667438482524358479920093362671073499261536442509635978938254572171219604223534931048801135996840036883391975783540196339746427425612440311802930181139735185695582618989988117958811316075569114339755674685677959928036900764099458526085419821675058081439927368204872326934818289759660177557064039914505754639463377998991196112023961998610668733702044390628198372939453058274311754372582831610070101869681001548640766315884308521449756188946074250519766336654408201104386777792941840610188681466688436569953569101322404299961245271858446078822593644050595237420612302915602324865912944449105260539387579372432085618031718618467399412498198037020264352404192035385525718637738445737173126887883204422338914094077117405266369732555437529835445785310643028012476150339747654769477837975324497094712742252873395275094111602092150983608511685837417691370283134112558707615144700568498489604300808338456202632290195011163561765905032989492777753130863693458023240541703789339666010447835045257252715361960269883076313236873064974259132787196196424346621374024293770156313978590441642103302299007768492108804953992601544447761538374942979300239461633293490859599063452938858711250267104956507397978474403844807309379849329624027364559546136877836071647522487335680653875008575928199095693277072357337411294063778987393546727728838736254506361668708240985190446787175682032349692908267897330716513026626394037531214887715636133426679029411503800223468119703782419347164191227385529597982634049525824249489381004584297761575054940323722350162865941897918756430316221819391580856455929590012212693971767718111156134625119611537902990743877562663928969788178546328357672482203921172030547393621262720602994243945777523017683019828452189053409346073165497827641541546661811362000069860698473847235166780178734237150200969007414767921753122493459975351206764098974709508735766435838682683431012232653877433197670329155560765634097241957053112237676513811748995099145494510366979493271174202393093949872617145305822631758071249330647970105326491208165384679106654911636291369219591774072389480094363848652230439114251230301727437540976950510736579784395802523606453713668228567047296997827776205239775215773191504628314406040463975203778623513875837323952073230041221445555570861593964350888214523314641085730437948149961122240579538109762211134983888224068986964032346290276113268596102816682853305085149030325552748215495078408622679995786080249473690737026626873405306052299932424760848269117260311258313117827223249824645230833114931474245579229315184388294163598032419249401202852156302446910810247963489869968887090519584584819820604231857986183254977904943759345535508926487273426498495065483968097609125809575651864291878638656751118948252709080366966631434561807538043142623374192000538765039906244673936922990047910893164884788344826422647704033143076607040449945061462449827844843237262351978322868811378865263527055247746845940099739111104279244801339852071272925084450912408790993841951019053768851872131163025230275e-7527 Probably want to zoom out a little bit to avoid a huge minibrot, the size is relative to the main continent (which would have size 1). And no, I haven't rendered an image, moreover the zoom video would likely be boring spiralling around for most of it Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on February 05, 2016, 07:56:21 PM Impressive!
The zoom-movie starting this thread is also rather boring ;) Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on March 01, 2016, 12:07:35 AM Each minibrot (and each bulb) has an integer period P, so you solve <Quoted Image Removed> for c where <Quoted Image Removed> you get the nucleus of the minibrot. You can solve numerically using Newton's method for root finding: a solution to <Quoted Image Removed> can be better and better approximated by iterating <Quoted Image Removed>. You have to start from a reasonable guess <Quoted Image Removed>, otherwise you might be caught bouncing around between the fractal basins of attraction for too long, but when it starts to converge it usually converges pretty rapidly. You might also end up at a minibrot whose period is a factor of the period you were after, but there are ways to check the result. I am sorry but I don't understand the mathematical notationsThis post of mine has some pictures with basins for low periods: http://mathr.co.uk/blog/2012-12-25_mandelbrot_set_newton_basins.html Can you give an example? If I have a location at r=-0.8691524744, i=0.2556487868 and zoom=1.25E5 Can you show how to get to the minibrot around e10? Title: Re: Deepest - e10000 Post by: claude on March 01, 2016, 12:49:36 AM Ok.
The first step is to find the period of the central minibrot. You can do this by iterating the 4 c corners of a box around the view, and seeing at which iteration count the 4 z points surround the origin. See http://www.mrob.com/pub/muency/period.html for a more detailed description of the method, I have an implementation which you can read here: http://code.mathr.co.uk/mandelbrot-numerics/blob/HEAD:/c/lib/m_d_box_period.c (there's also an arbitrary precision version in the same directory) Applying this algorithm to your point and radius gives a period of 48: Code: $ m-box-period 53 -0.8691524744 0.2556487868 1.25e-5 1000 Now you can apply Newton's method. For each step of Newton's method you need the period'th iteration of z -> z^2+c starting from z = 0 gives 0, c, c^2 + c, ... and at the same time you calculate the running derivative dz -> 2 z dz + 1. Pseudocode to make it explicit: Code: function F(c, period) {Now you can calculate the Newton step Code: function Newton(c, period, maxsteps) {You need to start from a "guessed" c value, the center of the box in which you found the period is usually good enough (the basins of attraction are fractal, in fact). In real code you can stop if dz is 0 to avoid exploding, or when z/dz gets small enough, the maxsteps is just a safety measure - when it starts to converge it tends to get very close really quickly (quadratic convergence). My implementation is here http://code.mathr.co.uk/mandelbrot-numerics/blob/HEAD:/c/lib/m_d_nucleus.c (and there's an arbitrary precision version in the same directory). Applying Newton's method to the center of the view with period 48 gives: Code: $ m-nucleus 53 -0.8691524744 0.2556487868 48 64 To find the size of the minibrot I use the algorithm described here http://ibiblio.org/e-notes/MSet/windows.htm my implementation is here http://code.mathr.co.uk/mandelbrot-numerics/blob/HEAD:/c/lib/m_d_size.c (arbitrary precision version in the same directory) which I'll paste here as it's very short: Code: extern double _Complex m_d_size(double _Complex nucleus, int period) {It gives the size as a complex number, the magnitude is the size relative to the period 1 continent and the phase / argument is the angle of rotation. Applying this to your period 48 nucleus gives: Code: $ m-size 53 -8.6915874972342078e-01 2.5565708568620021e-01 48 my program splits it into magnitude and phase (in radians) for convenience, so the minibrot is 1.1865e-8 times the size of the period 1 continent, so multiply the view size of your initial view by this number to get the minibrot to appear about the same size. I attached an image of the minibrot (rendered with distance estimation). Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on March 01, 2016, 10:46:23 AM This is really interesting, thanks a lot!
Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on March 01, 2016, 10:54:55 PM Code: $ m-box-period 53 -0.8691524744 0.2556487868 1.25e-5 1000 Title: Re: Deepest - e10000 Post by: stardust4ever on March 11, 2016, 11:35:41 AM So basically through some kind of mathematical voodoos I won't pretend to understand, you can basically find a minibrot of any period, anywhere in the set, at any depth, without the manual work of zooming through the infinite cosmos. The limiting factor to depth is now the horsepower of your CPU and patience of the mandelbrot explorer.
Don't get me wrong, while technically impressive to find eternally deep minibrots, the automated process strips nearly all creativity out of the zoom sequence. @KF: I watched the first 6 and last 6 minutes of your YT vid. Let's say I am thankful not to suffer from epilepy. :tongue1: @claude: I would be most interested in using this automated brot finding process to cut out the long hours of tedious manual zooming in between scenes when creating sophisticated patterns... ;D I discussed this a bit in the superfractalthing reboot thread. Title: Re: Deepest - e10000 Post by: claude on April 07, 2016, 12:17:55 AM I rerendered this location in my own software using distance estimation, still not recommending to sit down and watch it like you would a film, so I picked some nice ambient drones as soundtrack...
https://archive.org/details/e10000 I think I started rendering it at the start of January, had to stop and fix software bugs a few times before continuing the render.. at least my program has fewer bugs now :) Title: Re: Deepest - e10000 Post by: quaz0r on April 07, 2016, 12:54:56 AM thanks for the share :) what method do you use for making zooms? there was a post on here about mercator maps or something but the thread died without much further discussion
Title: Re: Deepest - e10000 Post by: claude on April 07, 2016, 02:33:08 AM I blend between successive 2x zoom level images, using the blending factors here https://mathr.co.uk/blog/2010-08-31_optimizing_zoom_animations.html (and also motion-blur with the shutter open for 1/2 the frame time) source code here: https://code.mathr.co.uk/mightymandel/blob/8f45039d55408902d0d0c2723ed27fce65e10f14:/extra/zoom.c
I have used mercator map / exponential strip method in the past (my "emndl" project circa 2011), but I haven't added it to my pertubration renderer(s) yet - it's a bit fiddly to get right and it isn't suitable for interactive uses... Title: Re: Deepest - e10000 Post by: quaz0r on April 07, 2016, 09:14:48 PM that audio track is pretty epic too. the last ten minutes i felt like i was flying through the wormhole in 2001 a space odyssey :o
Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on April 07, 2016, 10:15:01 PM Very cool!
It shouldn't be hard for you to make even deeper zooms, despite the time consuming render... :) Title: floatexp vs edouble - accuracy and performance Post by: claude on February 19, 2017, 10:39:34 AM ... I had to update my floatexp class (used when deeper than e4920) so that it is based on 2 instead of 10 and masks off the exponent and handle it separately. That made it much faster than before, which was necessary to be able to complete this render in reasonable time. ... I've been working on accelerating my own edouble variant of the floatexp idea today. Made it almost three times as fast as before by using your masking code (thanks!) instead of ldexp/frexp libm calls, and annotating the branches with __builtin_expect (gcc-specific, maybe) to help CPU branch prediction. My edouble code is still ~2x slower than your floatexp (compiled with the same compiler), but it does correctly handle 0 (with underflow), infinities (with overflow), and NaN. But I worry that your floatexp might sometimes interpret 0.0 as 1x2^-1024 or so - I don't know how likely that is to occur in practice... My code is here: https://code.mathr.co.uk/mandelbrot-perturbator/blob/HEAD:/lib/edouble.cc Your code on my hard disk is dated May 22 2014, not sure which version that corresponds to. Title: Re: floatexp vs edouble - accuracy and performance Post by: Kalles Fraktaler on February 19, 2017, 02:33:52 PM I've been working on accelerating my own edouble variant of the floatexp idea today. Made it almost three times as fast as before by using your masking code (thanks!) instead of ldexp/frexp libm calls, and annotating the branches with __builtin_expect (gcc-specific, maybe) to help CPU branch prediction. Cool, I haven't updated it since that date.My edouble code is still ~2x slower than your floatexp (compiled with the same compiler), but it does correctly handle 0 (with underflow), infinities (with overflow), and NaN. But I worry that your floatexp might sometimes interpret 0.0 as 1x2^-1024 or so - I don't know how likely that is to occur in practice... My code is here: https://code.mathr.co.uk/mandelbrot-perturbator/blob/HEAD:/lib/edouble.cc Your code on my hard disk is dated May 22 2014, not sure which version that corresponds to. I haven't encoutered any problems that 0 is not actually 0... Title: Re: Deepest - e10000 Post by: quaz0r on February 20, 2017, 02:06:09 AM ldexp/frexp is epically, ridiculously, unusably slow indeed. i use union casting for the masking code though, which is at least explicitly supported by compiler vendors (while still technically undefined behavior by the C++ standard), whereas kalle's C-style casting is entirely undefined by anyone anywhere anytime. i forget if modern compilers just complain very loudly about it if you try to compile it, or if they now flat-out refuse to compile it at all.
Title: Re: Deepest - e10000 Post by: Kalles Fraktaler on February 20, 2017, 09:29:57 AM ldexp/frexp is epically, ridiculously, unusably slow indeed. i use union casting for the masking code though, which is at least explicitly supported by compiler vendors (while still technically undefined behavior by the C++ standard), whereas kalle's C-style casting is entirely undefined by anyone anywhere anytime. i forget if modern compilers just complain very loudly about it if you try to compile it, or if they now flat-out refuse to compile it at all. Yes you are right, I will use your strategy from now and not share anything ever again :(Title: Re: Deepest - e10000 Post by: quaz0r on February 20, 2017, 12:12:02 PM relax bro, i was just commenting on C++ issues :-* |