Title: mandelbrot fractal deep zoom 2^1116
Post by: SethComposerGuy on January 13, 2013, 09:16:22 PM
http://www.youtube.com/watch?v=PbwaFQ2r2c4
Title: Re: mandelbrot fractal deep zoom 2^1116
Post by: Pauldelbrot on January 14, 2013, 09:37:50 AM
:thumbsup1:
Title: Re: mandelbrot fractal deep zoom 2^1116
Post by: Furan on January 24, 2013, 11:07:18 PM
That was unbelievable. I noticed the same structures repeated over and over and yet at the end the minibrot did appear. Does it mean all the various features of the main Mandelbrot can reappear? Or was that just a mistake induced by depleting the numerical precision?
Title: Re: mandelbrot fractal deep zoom 2^1116
Post by: Dinkydau on February 06, 2013, 03:52:08 AM
I was going to like it but the change in speed all the time, kinda ruines the experience for me.
Title: Re: mandelbrot fractal deep zoom 2^1116
Post by: cKleinhuis on February 06, 2013, 10:04:10 AM
That was unbelievable. I noticed the same structures repeated over and over and yet at the end the minibrot did appear. Does it mean all the various features of the main Mandelbrot can reappear? Or was that just a mistake induced by depleting the numerical precision?
it was certainly not an error, zooms to this stage can easily have a precision of many hundred decimals, the self similarity of the mandelbrot is exciting, meaning that it is full of minibrots,
Title: Re: mandelbrot fractal deep zoom 2^1116
Post by: David Makin on February 06, 2013, 05:07:53 PM
And every minibrot has the same minibrots as the "parent" brot/minibrot (appropriately scaled down) plus some extra.
Title: Re: mandelbrot fractal deep zoom 2^1116
Post by: David Makin on February 06, 2013, 05:19:30 PM
At least one formula has as many minis as the standard Mandelbrot plus more, in fact 2^(n-1) disconnected minibrots in each iteration band plus extras of course around each of these minibrots. Fractal1 { ::LGgUojn21y53POutRc83Pg7/BD/U7Dxno8vTheI5uki0mLpAJ9liCsQ3XL5V90Pclk31O/1X SKZvr8KJODp7BcYtlmZIHKyhcop+EXGi6w0v99vbyk6k60ogp/YzlETn8cyu6HD26vZyjRJ7 fsOY12VTSDPHVWFIUasPMLLMwfmvXn/5PBlR7SqrCm+pwnim85wvmk/X8/wqP47JmP99vTbD dZiwD1JF5BT/+Q819lFHz3NdSxhQkUfOQ45NJLq+xidBZHTrTOEWV9+3lFe4QS++G1jyrjKD 8+gUww95BiZev/dxFlSxD1CkFeKRJhyUHiKxjR4rBFxxTiTSjyDzk+bWW88ZHjzmORasyzBT /8n/x57+mPHuPBTV24wDVRhSVD+toskvJ8Ydx1LtL6gsFS4ruQdYZdFClNhifw371KWGFmGc Oq66FSkV2gclZUWTWda+yThpHjUOTjy/h2kan7wDIYRzfFBimP4rcKv27O/yVXE4Nb5FLglX u8q2Pco4ZZrh/LfW86v4/alres4ZZbdbF/YVUT1b6/MX+5dT+TJRzmkXU/o8ZxfutdSejDJn iSDm+xicZtPveCm2cd1TqyoWnR+92WqZXKsnbteXFreuxe/LdTh+CdMU1z3aHVlW2fpt1OZv s/put9QZxujou5LVRpxlFtfJMfv0tVWr+l2+s22rc5lETifIOXEksTW0yrFncKOvR340kDyP 1W2ZhppfJMJNYXyTRl7bkWdhijyxOLXOfluYavi8B5P8NL16VIbGD+1443/uk8KZx0McsMMv KW+0KvIP69vTqx1bJrIVqBI+LX9iYpF7fVv6fT2IuLsc3sjIV/0ptz9fNKPqMB/1ywdJyL9x i0iS5Tw2Hgo9rfMVOUTP0Y2x0v8tyREP8Dnqjy3Ft7jJpJh9J+sneYfjxbGt9m7e57qbPg+t 1KzSKrZRtVIoqQyeAz7Ty2wHXbOm8pknmN9Ni15hUf2Znagabvqu3pZE18P0bFN+4u9yen9f dRTQ03UlDPoiPEdtf1Nq+Qzd78w5nUX6nyOUUWPdEl6+IacB1/95SZw2mwnEkORXBkCLGT4D P0IncGiGHZ64SnFmkXL/fY1hI5AY5zgxlvZAhcOggpoILrIX3K9LHTT/9L3ZKRLQv9qrSvUF YpmMsYplqmLdPOqKjTYulUNzZYthOivuiIcvJXYVbuwyGdhDt6C+N7lR6GeTtnZJllFlGFrz kPDJkcBHZpRyg5GeaHu7/csqWvwMD2sRy6zH0zWLDbWO5fEWKn0R2bZqBFlLLsvohvIw+yoo 8AhBz8F1SFGVo4HaqmQXBDW4vdx2Vr93ukiSDMxnSnPrmXfKFjQvf8r0QLQmqMYo0uo4Q5yj tS3XPP6r0fGN9ldVL2FJXNlKw80ftMZvMMd6Edj0kPrulupK2kdifQXuKj1uS/0zkqAINMz0 YgXXbzifpg+hTI9YlM5DSK/fzSyD8JKa4pg50kVa1mkoE0EP8UbOXkEXOcL9pU5qb93ulkC6 hfNqsczaSqoGL2ohQsYcNumXHFDnJXHY3Bif31r/zqwUTpaF+jEb16lv0EXkn2yq+bMwM6Gw 6ws3aFdMXOKQIG8tqQPgsWDniO3xCDEq+frMEv41dMrldZcKS+tWovw6a/yKr1Xget1iY1rc 8Q/aDyP+fXLb7kBdtCnZGejn1z0EN9oyZaL6zacreknCpri8mP5GdZN5SXd5OTTXt5PtTX9Z MHUH1JNh0hHUZBbch2y0Ii/Sm5FtLlp7sap1xfvp0jkaxJvoGxVTAJNusANMCvRBdv9pfK5p JiVEqOVRq5V8nvY5KzCfZDjHXq4yQIfGu2bNBhVbLgaIOBRDfSmHrM+5vID7FmaW+E9mK/zJ 5RhlmleXCioUL2dML7cApHElHekSHpZRnI5/NjqpYwskdqxgmFMt4ZZRTRyHT2/4BpRXd9fr JY+oniSrC2QobYzuUXRy9iTD37ZefPu0X0jcnxyKPSdEzOQTucZ10jm/Io7PCG+jgo/II6Pi AffKdXUukPdXynhL5T0l8J6SS5Ez8J6Tzp7TzZ4TzJ6TzJ6TzDmPf2ai+0C6+0CG+0Ci+0Ci +kUuVz2Q1pWS3pWywpWS0pWS0pWGMf7s5UdqV0dqVMcqVEdqVEdqVB+bmJoOkaNdnaNDnaNR naNRnadwyZro6Tbo7TbY4TbGfN9X9pN0m9X6VbCEbnti8oqt09rtM8rtE9rtk9rtBzXNbJ5n XCGLnQwZ9EShp5aarSz3kiuZ2CyBNEcWaBr1WICWQz3UW1nozJXhxyZzJH9QwYVGCOLzQKMR vznh3JXsxiZe07XyY9GCOL4QK8GaenyqCquncdHez2SvrJjleI4s2DhaxC08PlZp9AR5gLC8 nthenTGrCRwZZIShnTMuiysezJ/EcZwC/ZCjTIU/cBpfDUlQ0OfAHCrlprnfKwz02i0KpMJ8 TGk80+j16DWmpIrnpK4J1p8ybMLpFYcjEu7pwcEtzYrXZRt6Hu3Yfoyw8dFZ0kzsUqtEKpmm cqNxaz8xlb/XCriOpCSaQuswTKx2QwcnpZuzmNXbfEPCz/eRUBZRF0tqQQubKl66Z611z0rr npXXVjU8Mu9HapEUkSQyWCj26Mp61ZS1rzkqXnHteZ/5ci15bi55ayizzE7zxUW4hLnrP9Bf by3lm+2z0X1hyowB+pPl1sLn1wBilqq7XFpzG2f5oTO1kambdvRaZpc5bqQV81aoN6vjGXaw lza96OOfq5nb8i3976fwrWBnS1iMd5OKetWxWz2fp0L38VGS7ECymSGKIe0d+fYF/jbOIy80 znviyYDVR1q1oZUvyoDDOrcHBbPJykE9xinPIr51De+Avpq/1ozN/c/3cui/R5l+7RnbOiD6 nXVTpbL2d46oqsec97kHx9WbEL/4rcP2GJ/Ym8jV9n24wq18XP56u3sar3q5r2wT/k8dRnGY SITlqwwh2wQpK43I18XZu1+r34Pf1q1CLKX/Af7K356yVs1zv/zHuhyVlerVl7iG/d5yVCba nXEs0qid5lHveL8soYXGIsrcX1Uue+eW5urC8trcX7W351Bztrc30UuzXsu/chMUubCWv0mi d7F3VYVMjtBzHaXBaOoS9uepxO0ea1osa0LCa4A51IW8DVFpJ7uM01bjBpTyfSug1GXYoMs7 Krc9THKqMLthDayFx6p1j8pPujNo3U+iCUOxa3qDjje8tqy8kH3VdrP4xdND9jaWX9G/wl9m qKjTdcXdH74jdrkjcgx6KqpjI2NSb4Qh1VazHDsuyT5gf1VDCH1rrjAaD8QMWhS8gpf8YVdR 2kRTyrrOMzQ8tKzZwK/sFNpr5hc0zcUv89m0Hvk5IbTbVrBrEJNpffpTq9sGbKYaQjJVaS9x Ttkm2+2q+4pZ2j2jlsZPiPeKn9pgxEP71lMk+p+5bTOoVTtwoW2r1Q2oNH3b7N3NJm2sbIee sN2oJoaSZappayKjlsKtagw47ZAhagw2Hv0SflUdYwkYpVHMlKLp6wgJ0SrOYKtWS1hhSulW VwUKukqCDmoLt6gp0dJVHGMpXa1h13jhFDmAMt6gp0gJVHGKZYaVBTpETqKYKxYSvltXKH3e N4erV4MFldvGc9qNnXDueMgFvGc9blReN46XhRfN46XlxeN46RDmvGcjYBXeN4GxsW2lh5rB 34Wg7rB34WzmXDuxsobvGcjZZ+7NB/XDODeGrXDuxsFl9xg9rB3YKSdPOs51gbMdpv/H2+aw Nm+k3bEevGcvaH7uZLV6fEj5J5YHUfQ0RMec6rhk7xrYF61JuQQPWKrwm2w/Bb5+gr8egdMN ShvsirDdCJN29HJ0DxoMEDoQO2BjwE9FRoHxGdkvGsWNvVo/Npxm0gDIZDbfn1m0k6+9vi0d aC89LFv5Wqr/UYa/J1ru5zNYHc5b3xi0i9ar+TKms1n6VfN65eOvlKqv1ff8kTXJC3Nqc45y glDojuY6RpXYBn3MFl+6vBeQoihrc6bQqihBxKGG4xps6qP6oDcH1TCxH8GDJZY8DeKsCKZg 8b2M4hlMwiLZgHYyAXykB3RTGsiNZwS4kBHoTGcAPZgGfyAVAlh7AhygdIKD2yoM4CkygLUK DExUGIypMQCUZgOpyAdUlBrhoDoAOHQDWOgEgcgVQxB3FmlB+cvBWx6G4C2ygrcLDcWIrOR3 pDhuGYNuaALE1AnoXGYAiGwB+MgJwZATIzA2glBWATGwHgMgI0Yw9BjZwOOmB3AZGcmkZ4+g yMwmlZwCYmB+0MDujzMwZjcv+rTzJWudANDuT0MwZvcH9n42g56ZSAt5YMTwdHqZ4+Q1MYPW zAnN0V7cJDz1MYLYzg1kNDug2M4CbzgbwNDuS3M4IezgN8NDkAcGIS4MYHizATGnB2QODMpc GYh5MQjzZgFozADSnBuoOD8YdGoC7MQm2ZgOuzARenB6APDkJeGoj8MYFzzAdonBWUPDMweG 4x9MQE8ZgK5zAV0nBGsPD8gfGIS/MQF/ZgB/zADAoBeEQDERgGoyANwBCagBF0APMoBicQDU BhG4QCNwAFagHL0ARYoBq0QDswhGYwDNwDIagIR0AVkoBWMRDMgiG4RFNQELagKX0ALwoBGk RD8QjGIyGNQFOagDd0AD8oBe8RDEBkGoTINwDRagBj0APIpBiUSD0xkG4xJNwBUagJp0AVUp BGsSD8glG4QLNwEXagKv0AHgpBmETDcQmGYyMNQFaagD10ATspBOcTDMBnGoSONwCdagJ70A H4pBm0TDkxnG4xPNwDgagDB1ATEqByMUDMhoGYSRNQFjagOH1AdQqB6kUDkRpGIzSNYEmagC N1AZcqBq8UDUBqGoRUNQFpagKT1AVoqBiUVDUxqGIyVNwAsagBZ1AD0qBGsVDMgrGYQXNwAv agBf1ANArBaEWD0QsGoxYNQDyagGl1ANMrB6cWD2DaNwi0agJq1gFsWDshtGIQbNYE3agAto glAXD8oBFsD5agPz1ARorp/14+dSQXDWTdNYP21ARur18j6KobLWgXD2SeNYN61gtsXDkhvG YQfNwE/agI/1aY+X1UGGjffPnJwGuLIYDWygN4KE2gdUYDuihNYLH2grgYD2SiN4KK2gtsYD uCjNYJN2gr4YD2yjN4KQ2gtEZDuikNYLT2grQZDWSlN4KW2gFv+5wSwsByvHwgIa2AP2sBOw ZD8ozGI+CQi7Bf2AbAtBbI0GcARbwRGth7Ek2gtUaDcw0GchTbgOo2ADStBeoaD8Y1G4CrNw nWbgNu2ATetBbA2GciYbwGktBXY2GsFabgD120L6PkM12gjYbDuytNwBcbNAluFcbWYUqwbD uRvN4I+2gb8bDMB4GYTwNYFC3AHGupfUfmAD3gzQcDco42FqrZv96mcr2eBjgxN4EH3w9Bkb wFSuh7DK3gbscD3HYuB3o5GuP4cDuxzNcfA6Gciob4+g0N4GT3w9BqbwNquh7DW3gbcdD3Hw uBnI7GuPodDux2NQHub4+Q3NYHe3gb8dDOD4NcfI8GYj4NYBj3AfIvB3p82/He7AHzu223xG Qvd/e7ANYObe7AH1k3BWvh7Ds3g90e7e92BOqxItdI2B8N4Cx3gLIfDux8N4K03gjUfD2g9N YH33gRwvBWkfDjg+NMK73w4w5qJoMICAO4EB4AdEwBWMgD2ABOYLF4grYgDs5AHIBCOYFJ4g JUwBKsgDEhBHISDOQGHcgBP4AVgwNECxeBJc/W4z1q995tyMCL4iTOhi8n6H5ZXAF3UxE5HH IcAuyMuRAGHGINyWoxhGqx1TNXzMueLWN346FcaNUjrfl0kjrXta5GXvqJbhusrdv5m/xXCr k9W/144+UtdvGlPcfbrj+Nn9Sc8vVvtoX34uJ6MckFnWngNyMl83sp9qqdaq56iVCfxmlLbv R7+W0cvFrWuV0ej5voh6tmutP1rLz8irF5lZh8XKD9+/AAfq5WF= }
|