Title: A Gray code Hadamard matrix self-similarity Post by: tftn on November 02, 2006, 08:42:24 PM A Gray code Hadamard matrix self-similarity zoom movie: http://www.mathematica-users.org/mediawiki/images/2/25/hadamard_64_zoom.avi <http://www.mathematica-users.org/mediawiki/images/2/25/hadamard_64_zoom.avi> Herev are two together ( bigger file): http://www.mathematica-users.org/mediawiki/images/3/38/hadamard64_32.avi <http://www.mathematica-users.org/mediawiki/images/3/38/hadamard64_32.avi> New movie: http://www.mathematica-users.org/mediawiki/images/4/4d/had_P_GC_64.avi My observation is that these look like Wolfram's CA's. Documentation of the math: %I A000001 %S A000001 1, 1, -1, 1, -2, 1, 0, -2, 3, -1, 1, 0, -2, 0, 1, 0, -2, -1, 3, 1, -1, 0, 0, -3, 6, -2, -2, 1, 0, 2, -9, 15, -11, 3, 1, -1, 1, -4, 2, 6, -1, -6, -1, 2, 1, 0, -2, 7, -1, -11, -3, 8, 4, -1, -1, 0, 0, -3, -6, 4, 18, -9, -2, -3, 0, 1, 0, 0, 0, -4, 3, 19, -29, 11, -2, 2, 1, -1, 0, 0, 0, 0, 4, 0, -25, 16, 26, -20, -4, 2, 1, 0, 0, 0, -4, 11, 7, -63, 63, 8, -34, 15, 1, -3, -1, 0, 0, -3, 12, -23, 46, -123, 176, -74, -64, 84, -32, -4, 4, 1, 0, -2, 3, 9, 43, -263, 397, -259, 119, 17, -134, 32, 56, -8, -9, -1, 1, 4, -18, -36, 157, -50, -220, 78, 226, -64, -141, 20, 56, -2, -12, 0, 1, 0, -2, -9, 31, 85, -265, -8, 382, 6, -368, -14, 204, 23, -69, -9, 13, 1, -1, 0, 0, -3, 30, -92, 6, 277, -30, -774, 802, -208, 100, -129, -22, 38, 16, -10, -2, 1, 0, 0, 0, -4, 11, 95, -41, -341, 210, 666, -1013, 445, -49, 39, 9, -17, -21, 9, 3, -1, 0, 0, 0, 0, 4, -8, -107, -16, 435, -50, -940, 694, 473, -630, 136, -68, 89, 6, -19, 0, 1 %N A000001 n th level Hadamard matrices for Pascal type binary are inversted and multiplied by the corresponding n th level Gray code Hadamard ( some of which matrices have determinant zero): the resulting matrix is processed to give a triangular sequence. %C A000001 Matrices: 1by1 {{1}} 2by2 {{1, 0}, {0, 1}} 3by3 {{1, -1, -1}, {0, 1, 1}, {0, 1, 1}} 4by4 {{1, 1, 0, 0}, {0, -1, 0, 0}, {0, -1, 0, 1}, {0, 2, 1, 0}} 5by5 {{1, 1, -1, -1, -1}, {0, -1, 0, 0, 0}, {0, -1, 0, 1, 1}, {0, 2, 1, 0, 0}, {0, 0, 1, 1, 1}} 6by6 {{1, 1, 0, -1, -1, 0}, {0, -1, -1, 0, 0, -1}, {0, -1, 0, 1, 1, 0}, {0, 2, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0}. {0, 0, 1, 0, 0, 1}} They don't get interesting until 4by4! %F A000001 x(i,j)=a(i,j)^(-1).b(i,j) p(n,x)=CharacteristicPolyynomial(x(i,j)) p(n,x)->t(n,m) %e A000001 Triangular sequence: {1}, {1, -1}, {1, -2, 1}, {0, -2, 3, -1}, {1, 0, -2, 0, 1}, {0, -2, -1, 3,1, -1}, {0, 0, -3, 6, -2, -2, 1}, {0, 2, -9, 15, -11,3, 1, -1}, {1, -4, 2, 6, -1, -6, -1, 2, 1}, {0, -2,7, -1, -11, -3, 8, 4, -1, -1}, {0, 0, -3, -6, 4, 18, -9, -2, -3, 0, 1} Polynomials: 1, 1 - x, 1 - 2 x + x2, 0 -2x + 3x2 - x3, 1 +0x - 2x2 + x4, 0-2x - x2 + 3 x3 + x4 - x5, 0+0x +3x2 + 6 x3 - 2 x4 - 2 x5 + x6, 0+ 2x - 9 x2 + 15x3 - 11 x4 + 3 x5 + x6 -x7, 1 - 4 x + 2x2 + 6x3 - x4 - 6 x5 - x6 + 2 x7 + x8 %t A000001 c[i_, k_] := Floor[Mod[i/2^k, 2]]; b[i_, k_] := If[c[i, k] == 0 && c[ i, k + 1] == 0, 0, If[c[i, k] == 1 && c[i, k + 1] == 1, 0, 1]]; An[d_] := Table[If[Sum[b[n, k]*b[m, k], {k, 0, d - 1}] == 0, 1, 0], {n, 0, d - 1}, {m, 0, d - 1}]; Bn[d_] := Table[If[Sum[c[n, k]*c[ m, k], {k, 0, d - 1}] == 0, 1, 0], {n, 0, d - 1}, {m, 0, d - 1}]; Xn[d_] := MatrixPower[Bn[d], -1].An[d]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[Xn[d], x], x], {d, 1, 20}]]; Flatten[%] %Y A000001 Cf. A122944, A121801,A122947 %O A000001 1 %K A000001 ,nonn, %A A000001 Gary Adamson and Roger Bagula (rlbagula@sbcglobal.net), Oct 26 2006 |