Logo by mauxuam - Contribute your own Logo!
News: Check out the originating "3d Mandelbulb" thread here
 
*
Welcome, Guest. Please login or register. December 15, 2017, 10:30:27 PM


Login with username, password and session length


The All New FractalForums is now in Public Beta Testing! Visit FractalForums.org and check it out!


Pages: [1] 2 3   Go Down
  Print  
Share this topic on DiggShare this topic on FacebookShare this topic on GoogleShare this topic on RedditShare this topic on StumbleUponShare this topic on Twitter
Author Topic: Could Pi be considered a fractal?  (Read 5015 times)
0 Members and 1 Guest are viewing this topic.
Chillheimer
Global Moderator
Fractal Schemer
******
Posts: 972


Just another fractal being floating by..


chilli.chillheimer chillheimer
WWW
« on: August 13, 2014, 03:13:14 PM »

So let's zoom onto the border of a circle.
The closer we zoom, the more it looks like a straight line.
But compared to each last zoom step what you see is still very self similar to the original, just the curvature is a little less obvious.
But the curvature will always be there, no matter how deep you zoom. So it will never be a straight line.

And isn't that why Pi has infinite decimal places?`we will always have to round up or down the "last" decimal place. and will never find out the real lenght of 'the coastline of england' - or the circle..  huh?

And then: The M-Set is full of circles, all the "blobs" attached to the main body.
and: http://www.pi314.net/eng/mandelbrot.php

in my opinion, a circle is just a very special kind of fractal.


« Last Edit: August 13, 2014, 03:16:19 PM by Chillheimer » Logged

--- Fractals - add some Chaos to your life and put the world in order. ---
cKleinhuis
Administrator
Fractal Senior
*******
Posts: 7044


formerly known as 'Trifox'


WWW
« Reply #1 on: August 13, 2014, 03:28:21 PM »

that the iteration count converges to pi is new to me wink

pi itself might be fractal, (obviously, but no rule has formulated for it yet)

nevertheless, isnt a fractal a thing that provides a border with a broken dimension? which leads to an infinite length on any subsection, in my point of view this does not qualify for a circle, the circle just does not get longer when subdividing, and as you pointed out it converges to a line when zooming incredible deep, so not a fractal wink
Logged

---

divide and conquer - iterate and rule - chaos is No random!
Chillheimer
Global Moderator
Fractal Schemer
******
Posts: 972


Just another fractal being floating by..


chilli.chillheimer chillheimer
WWW
« Reply #2 on: August 13, 2014, 03:46:20 PM »

nevertheless, isnt a fractal a thing that provides a border with a broken dimension? which leads to an infinite length on any subsection, in my point of view this does not qualify for a circle, the circle just does not get longer when subdividing, and as you pointed out it converges to a line when zooming incredible deep, so not a fractal wink
hm.. on the one hand I agree.
but then, when I think of the koch curve for example. If you change the length and angle of the variations, it still is a fractal curve, right? (see attached picture, a short scetch I tried with http://dood.al/ )
you could make the angle smaller and smaller, making the form appear more and more circle-like. but when exactly do we cross the point, when the shape isn't fractal anymore?

isn't that the same problem we face, as when trying to calculate with pi? the smaller the angle, the more decimal places for pi?
(I'm aware, that a circle isn'T made up the same way as my example, but this is the only way I can think of to explain what I mean at the moment)

edit: maybe I should have taken "isn't a circle also a fractal" as headline.


* Doodal_ahogib.jpg (51.71 KB, 800x600 - viewed 457 times.)

* Doodal_ahogib2.jpg (71.6 KB, 800x600 - viewed 463 times.)
« Last Edit: August 13, 2014, 04:07:52 PM by Chillheimer » Logged

--- Fractals - add some Chaos to your life and put the world in order. ---
lkmitch
Fractal Lover
**
Posts: 238



« Reply #3 on: August 13, 2014, 06:34:08 PM »

So let's zoom onto the border of a circle.
The closer we zoom, the more it looks like a straight line.
But compared to each last zoom step what you see is still very self similar to the original, just the curvature is a little less obvious.
But the curvature will always be there, no matter how deep you zoom. So it will never be a straight line.

And isn't that why Pi has infinite decimal places?`we will always have to round up or down the "last" decimal place. and will never find out the real lenght of 'the coastline of england' - or the circle..  huh?

And then: The M-Set is full of circles, all the "blobs" attached to the main body.
and: http://www.pi314.net/eng/mandelbrot.php

in my opinion, a circle is just a very special kind of fractal.


There are certainly concepts that are common between pi and fractals, but I don't think pi itself is a fractal.  Pi is a number, not a shape or infinite collection of points.  And the fact that a circle's curvature never goes away is a characteristic of all non-linear curves, like a parabola (which has nothing to do with pi).  That zooming in on a circle eventually is indistinguishable from a line shows how a circle is not a fractal--zooming in on a fractal will never look like a line.  That's the point about fractals.  Pi having infinite decimal places is an artifact of our decimal place value notation.  The fraction 1/3 has infinite decimal places as well, but is not fractal-like.  If there is a parallel structure between numbers and fractals, maybe transcendental numbers (like pi and e) are more fractal-like in some fashion.
Logged
Roquen
Iterator
*
Posts: 180


« Reply #4 on: August 13, 2014, 07:57:55 PM »

Be careful:  http://experimentalmath.info/blog/2014/06/can-pi-be-trademarked-2/  (WTF???)
Logged

All code submitted by me is in the public domain. (http://unlicense.org/)
Sockratease
Global Moderator
Fractal Senior
******
Posts: 3181



« Reply #5 on: August 13, 2014, 10:47:59 PM »

I doubt pi could ever be considered a fractal.  Just because I don't think so.

Can't support my assertion any more than that  (but it's good enough for me!).

I am curious though...  Every time I have looked for a formula for pi, I have never found one!!

All I get is the standard definition about radius and diameter.  But when seeking 2 actual numbers for really doing the calculation, nothing ever shows up.  I want 2 numbers I can do a simple division and get an answer that agrees with the given values in text books for at least 100 digits, preferably more. 

Does anybody have 2 such numbers?  The only 2 I ever find given are the ancient approximation of 22/7 which fails miserably in terms of really giving this string of numbers we are all familiar with.

I don't understand how this can be so universal, yet so elusive   head banging wall
Logged

Life is complex - It has real and imaginary components.

The All New Fractal Forums is now in Public Beta Testing! Visit FractalForums.org and check it out!
Roquen
Iterator
*
Posts: 180


« Reply #6 on: August 14, 2014, 06:10:31 AM »

There are plenty of formulas for PI.

http://en.wikipedia.org/wiki/Computing_%CF%80

http://bit-player.org/2014/the-pi-man

You want 2 numbers.  How big?
Logged

All code submitted by me is in the public domain. (http://unlicense.org/)
Sockratease
Global Moderator
Fractal Senior
******
Posts: 3181



« Reply #7 on: August 14, 2014, 10:41:21 AM »

There are plenty of formulas for PI.

http://en.wikipedia.org/wiki/Computing_%CF%80

http://bit-player.org/2014/the-pi-man

You want 2 numbers.  How big?

Oh yes, I have seen the many formulas involving summations and trigonometry, but I always thought (purely from a Philosophical point of view) that if the definition of pi was "the ratio of a circle's diameter to it's diameter" that it should be derived from a simple division and have many possible choices for the variables.

But I only ever see longer formulas involving other operations than just plain division.

This never made sense to me.

I just thought it should have a more elegant solution more in keeping with the way we define it.

Just the philosopher in me balking at math things which I feel don't work "as advertised"

I know there are good reasons for this, but it's just that the several times I tried using just derived values for a circumference and diameter, consciously trying to bypass the formulas and get the value from simple numbers without formulas beyond "a/b" they never agreed with book values for very long.

I just enjoy poking at the foundations of these sorts of things.
Logged

Life is complex - It has real and imaginary components.

The All New Fractal Forums is now in Public Beta Testing! Visit FractalForums.org and check it out!
Roquen
Iterator
*
Posts: 180


« Reply #8 on: August 14, 2014, 11:09:00 AM »

You'd have to invent a numbering system...assuming that's possible.  It's an irrational number.  Distances along the arc and linear distances are different symmetries so it's might be expressible as pure division is some conformal system (lines and circles are the same)...humm.
Logged

All code submitted by me is in the public domain. (http://unlicense.org/)
tit_toinou
Iterator
*
Posts: 192


« Reply #9 on: August 14, 2014, 04:46:45 PM »

Yes, PI is a fractal, maybe you just don't have the right visualisation.

Digits of PI can generate nice images, the only software I know to do that is CloisterWalk : http://fr.sourceforge.jp/projects/sfnet_cloisterwalk/ .
I think it is created by Benoit Cloitre (others images of others constant on his website) : http://bcmathematics.monsite-orange.fr/ .

I tried to create the same images but I failed (for now)...
Logged

lkmitch
Fractal Lover
**
Posts: 238



« Reply #10 on: August 14, 2014, 05:08:13 PM »

Here are a few random walks generated using the digits of pi:

http://spacefilling.blogspot.com/2014_03_01_archive.html
Logged
laser blaster
Iterator
*
Posts: 178


« Reply #11 on: August 14, 2014, 05:55:29 PM »

Oh yes, I have seen the many formulas involving summations and trigonometry, but I always thought (purely from a Philosophical point of view) that if the definition of pi was "the ratio of a circle's diameter to it's diameter" that it should be derived from a simple division and have many possible choices for the variables.

But I only ever see longer formulas involving other operations than just plain division.
Have you heard of the continued fraction representations of pi? For example, this one: http://functions.wolfram.com/Constants/Pi/10/0002/. It's a very simple recursive formula that only involves division and the sequence of square numbers. It's also possible to approximate PI using geometrically inspired iterative methods.

Or maybe you're looking for rational approximations to PI. 355/113 is accurate up to 8 digits (including 3). Here's an article that explores other rational approximations:
http://blog.wolfram.com/2011/06/30/all-rational-approximations-of-pi-are-useless/
The general rule is that rational approximations require you to memorize roughly as many digits (including both numerator and denominator) as digits of accuracy they provide in decimal form. However, some approximations perform better or worse than average. 355/113 is one of the standouts.
« Last Edit: August 14, 2014, 06:05:19 PM by laser blaster » Logged
tit_toinou
Iterator
*
Posts: 192


« Reply #12 on: August 14, 2014, 07:48:02 PM »

Here are a few random walks generated using the digits of pi:

http://spacefilling.blogspot.com/2014_03_01_archive.html
I have to precise that what I was talking about is NOT random walks.

It's an algorithm in which the direction of the walk is linked to a property of the number and works for others constants than PI. The images reveals the true nature of such complicated numbers.
It has been applied to sqrt(n), e, ln(2), catalan number, etc... and produce really interesting fractals patterns.
Logged

Roquen
Iterator
*
Posts: 180


« Reply #13 on: August 14, 2014, 07:51:44 PM »

It depends on what you mean by "random".  http://en.wikipedia.org/wiki/Equidistribution_theorem
Logged

All code submitted by me is in the public domain. (http://unlicense.org/)
Sockratease
Global Moderator
Fractal Senior
******
Posts: 3181



« Reply #14 on: August 14, 2014, 10:49:43 PM »

Have you heard of the continued fraction representations of pi? For example, this one: http://functions.wolfram.com/Constants/Pi/10/0002/. It's a very simple recursive formula that only involves division and the sequence of square numbers. It's also possible to approximate PI using geometrically inspired iterative methods.

Or maybe you're looking for rational approximations to PI. 355/113 is accurate up to 8 digits (including 3). Here's an article that explores other rational approximations:
http://blog.wolfram.com/2011/06/30/all-rational-approximations-of-pi-are-useless/
The general rule is that rational approximations require you to memorize roughly as many digits (including both numerator and denominator) as digits of accuracy they provide in decimal form. However, some approximations perform better or worse than average. 355/113 is one of the standouts.

I figured you'd need additional digits to get additional precision, but it still strikes me as excessively weird that a known circumference and a known diameter require such extravagant methods to derive "true" values for pi.

Makes me question the whole idea really.

It is mathematically sound, but philosophically unacceptable to me.

Good thing I don't write the rulebooks for this stuff!
Logged

Life is complex - It has real and imaginary components.

The All New Fractal Forums is now in Public Beta Testing! Visit FractalForums.org and check it out!
Pages: [1] 2 3   Go Down
  Print  
 
Jump to:  

Related Topics
Subject Started by Replies Views Last post
Greetings from Web2K aka John Bailey Meet & Greet web2k 3 900 Last post October 15, 2006, 09:15:13 PM
by heneganj
Boundary following for mandelbrot and Julia sets - John Bailey? Programming Duncan C 3 2547 Last post May 03, 2007, 06:19:09 PM
by Duncan C
The Formula Fractal Movies subblue 0 1128 Last post March 30, 2010, 08:22:26 PM
by subblue
a formula for everything Non-Fractal related Chit-Chat « 1 2 » teamfresh 16 3001 Last post August 30, 2010, 07:25:50 PM
by hermann
@jesse - save formula as new formula ?! feature request cKleinhuis 0 875 Last post October 10, 2012, 05:43:14 PM
by cKleinhuis

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines

Valid XHTML 1.0! Valid CSS! Dilber MC Theme by HarzeM
Page created in 0.276 seconds with 27 queries. (Pretty URLs adds 0.018s, 2q)