Max Sinister


« on: May 24, 2016, 11:31:55 PM » 

Today I had this idea in the other forum: Escher's pictures "Circle Limit" I to IV... they look kind of fractal, but I'm not entirely sure.
What do the other Escher fans think?



Logged




0Encrypted0


« Reply #1 on: May 25, 2016, 01:47:33 AM » 




Logged




TheRedshiftRider


« Reply #2 on: May 25, 2016, 06:13:13 AM » 

Well, I guess the shapes he uses aren't selfsimilar but due to the projection it becomes a fractal.



Logged

Motivation is like a salt, once it has been dissolved it can react with things it comes into contact with to form something interesting.



Chillheimer


« Reply #3 on: May 25, 2016, 10:02:23 AM » 

yes, definitely fractal. Well, I guess the shapes he uses aren't selfsimilar
I think they very much are.. same forms, some just slightly warped and decreasing in size. that for me is selfsimilarity



Logged

 Fractals  add some Chaos to your life and put the world in order. 



TheRedshiftRider


« Reply #4 on: May 25, 2016, 11:00:36 AM » 

yes, definitely fractal.I think they very much are.. same forms, some just slightly warped and decreasing in size. that for me is selfsimilarity
I meant the fishes themselves.



Logged

Motivation is like a salt, once it has been dissolved it can react with things it comes into contact with to form something interesting.



JosLeys


« Reply #5 on: May 25, 2016, 02:24:52 PM » 

Escher's circle limits are tilings of the hyperbolic disc. Nothing fractal about it. The individual tiles just get smaller and smaller towards the edge of the circle.
If one calls this 'fractal', than one should call the square tiles in your bathroom 'fractal' also.



Logged




Chillheimer


« Reply #6 on: May 25, 2016, 03:58:35 PM » 

wohoo, I've got fractal tiles in my bathroom! seriously: can't you see it? the patterns repeat and they get smaller and smaller, so they are scale invariant. to quote the very first sentence for "fractals" from wikipedia: A fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern that displays at every scale.what does the koch curve do much differently? or the cantor set?



Logged

 Fractals  add some Chaos to your life and put the world in order. 



lkmitch
Fractal Lover
Posts: 238


« Reply #7 on: May 25, 2016, 04:29:39 PM » 

Escher's circle limits are tilings of the hyperbolic disc. Nothing fractal about it. The individual tiles just get smaller and smaller towards the edge of the circle.
If one calls this 'fractal', than one should call the square tiles in your bathroom 'fractal' also.
I would say that Escher's circle limits *can be thought of* as tilings of the hyperbolic disk. That the projection makes the shapes get smaller and smaller toward the edge is what makes this a fractal image, in my mind. The bathroom floor is not a fractal because the tiles are the same size.



Logged




JosLeys


« Reply #8 on: May 25, 2016, 04:57:37 PM » 

Well, if you had eyes adapted to hyperbolic geometry, you would see that all the tiles are the same size, when measured with the hyperbolic metric that is valid in the disc.



Logged




Chillheimer


« Reply #9 on: May 25, 2016, 05:36:35 PM » 

So it's a question of perspective? If you watch it from a 'hyperbolic geometry'perspective, all tiles are the same size. The thing is, probably no eyes in reality are adapted to hyperbolic geometry  (being a purely theoretical concept?). So if you watch it from a human 'real life' perspective, with my eyes looking on the 2d computerscreen, the visible patterns clearly show fractal characteristics. I don't see the point in saying 'this must (or even can only) be watched from a certain perspective." (even if the mathematics behind this are solid)
Could you explain to a nonmathematician in simple words, what the difference between hyperbolic and fractal geometry is?
couldn't you generate eschers picture by using IFS?



Logged

 Fractals  add some Chaos to your life and put the world in order. 



Sockratease


« Reply #10 on: May 25, 2016, 06:07:06 PM » 

wohoo, I've got fractal tiles in my bathroom! seriously: <Quoted Image Removed> can't you see it? the patterns repeat and they get smaller and smaller, so they are scale invariant. to quote the very first sentence for "fractals" from wikipedia: A fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern that displays at every scale.what does the koch curve do much differently? or the cantor set? I think the difference is the same one I always go on about  if a fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern that displays at every scale, then the bathroom tiles fail to meet either of the qualifying criteria. They certainly are not a natural phenomenon, and it would take quite a lot to convince me that they are a mathematical set. Both the Koch Curve and The Cantor Set are quite definitely a mathematical set, and thus meet the criteria. That's just my several hundred pennies worth



Logged

Life is complex  It has real and imaginary components. The All New Fractal Forums is now in Public Beta Testing! Visit FractalForums.org and check it out!



Max Sinister


« Reply #11 on: May 25, 2016, 11:27:33 PM » 

Yeah, after thinking about it, it's like this: Like the Koch curve, these pictures have infinitely many figures on limited space; to create it, you need an iterative process, also like with many fractals; but you can't cut it in pieces which look exactly like a smaller version of the whole picture, so it's different. Am I forgetting something?



Logged




Chillheimer


« Reply #12 on: May 25, 2016, 11:54:10 PM » 

...but you can't cut it in pieces which look exactly like a smaller version of the whole picture, so it's different. Am I forgetting something?
I think you do. That there is not just strictself similarity like in the koch curve but also quasiselfsimilarity like in the mandelbrotset, where shapes can look very different from each other but still are similar to their 'close relatives'. A common example for this would be the distorted minimandelbrot sets deeper down in seahorse valley.



Logged

 Fractals  add some Chaos to your life and put the world in order. 



Max Sinister


« Reply #13 on: May 26, 2016, 11:15:57 PM » 

Well, the definition of fractal includes: They have a number of dimensions that isn't a plain number.
But how would you measure the dimension of Circle Limit X?



Logged




Chillheimer


« Reply #14 on: May 27, 2016, 09:18:09 AM » 

I have no idea. But I'm wondering about what kind of dimensions are we talking about? if it's the fractal dimension as in Hausdorff Dimension, lots of fractals have an integer dimension, like the mandelbrot set with 2. https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension



Logged

 Fractals  add some Chaos to your life and put the world in order. 



